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Course Objectives:

This course introduces varous number systems and conversion from one number system to
other and alwn to inderstand different hinary codes, the theory of RBoolean algebra and to
study representation of switching functions using Boolean expressions and their
mimimization techniques. Uinderstanding the comhinational Inpic desipn of vanons logme
and switching devices and their realization, the basic thp flops and sequental logic circuits
design both in synchronous and Asynchronous modes for vanous complex logic and
switching devices, their mimmization techmiques and their reahizations and to analyze a
given sequential circunt by using state tables and state diagrams.

MODULE-I: Number systems& Binary codes 8 Periods
Number systems: Number Systems, Radix conversions, complement of numbers.

Binary codes: Binary codes, Weighted and non-Weighted codes, BCD code, gray code,
excess 3 codes - Error detecting code, Error Cormecting code, Hammang Code.

MODULE-II: Boolean Algebra&Boolean functions 10 Periods
Boolean Algebra: Postulates and Theorems - Canonical and Standard forms: SOP and POS
forms, Minterms and Maxterms —Logic gates: NOT, OR, AND, NOR, NAND, XOR,
XNOR - Universal gates

Simplification of Boolean functions: Simphtication of functions: Karnaughmap (2.3.4.5.6
Vanables) and Quine McCluskey method (Tabular Method) - Prime implicants, essential
prime implicants.

MODULE-II: Combinational Logic Circuits 10 Periods
A:Anthmetic cireuts: Half adder, full adder, half subtractor, full subtractor, binary adder.
Carry look ahead adder, BCD adder

B:Code conversion circuits, Comparator, Decoder, Encoder, Prionty Encoder, Multiplexers
and Design, De — Multiplexers, ROM, PLA, PAL.

MODULE-IV: Sequential Logic Circuits - 1 10 Periods
Introduction —Latches and Flip flops: Basic Flip flop circuit, RS, D, JK and T Fhp-flops -
Tnggenng of Flip flops: Master Slave Flip flop, edge tnggered flip flop -~ Conversion of
one type of Flip flop to another,Setup time, hold time.

Registers amd Counters: Shift Register, Umiversal Shift Register, Applications of
Registers,Asynchronous counter, Synchronous counter, Mod-N Counter, binary up/down
counter, Ripple counter, Johnson counter.
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MODULE-V: Sequential Logic Circuits - 11

DIGITAL ELECTRONICS

10 Periods

Analysis of Sequential Logic circuit: State Diagram, state table, reduction of state table,
state Assignment —- Design procedure of sequential circuits using state diagram, state table
and Flip flops. Example design Sequence detector.
Finite State Machine: Introduction, FSM capabilities and Limitations, Mealy and Moore
models -
Machines. Partition techmques and Merger charts
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Course Outcomes:
At the end of the course, students will be able to
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Perform radix conversions
Minimize a given bovlesn function by wsing h-tap v tabulas iethod
Design a combinational circut

Design a sequential circuit by using various flipflops

Analyze and mimimize the circuitry of a given sequential circuit and wall be able to

design a sequence detector

minimization of completely specified and incompletely specified sequential

William 1. Fletcher, “An Engincering Approach to Digital Design™, PHI, 1"
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DIGITAL ELECTRONICS

MODULE 1

Number systems& Binary codes:

» Number systems: Number Systems, Radix conversions, complement of numbers.
» Binary codes: Binary codes, Weighted and non-Weighted codes, BCD code, gray code,
excess 3codes - Error detecting code, Error Correcting code, Hamming Code
INTRODUCTION

ELECTRICAL CIRCUIT AND SYSTEMS

« In which voltage levels assume
ANALOG iy PR o voltage and currents a finite numbe% of distinct

vary continuously through the values.

glven range. . « Itis also called as switching
+ Ex : o/p voltage from audio circuits.
amplifier infinity value ranging + Ex: Mobile phones, Radio
from -10v to + 10v. Me:gaphones ’ ’
» Power supplies « Digital computers,
Analog + Electric motors devices » Digital Calculators,

Digital audio and video
equipment, and
The telephone system.

devices

« Speed controllers

» Radio frequency transmitters
and recievers.

+ The instrument which represents
, ) the measurand value in the form
pointers that move in a of the digital number is known as
ContNUOUS arc across a the digital instruments.

calibrated scale. « Ex: Digital multimeter, digital

voltmeter,  digital  frequency
meter.

+ Those are having

DIGITAL CIRCUIT:

e Digital circuit is one in which the voltage levels assume a finite number of distinct values.
e Each voltage level in a practical digital system can actually be a narrow band or range of voltages.
e Also called as switching circuits, the voltage levels in a digital circuit are assumed to be switched
from one value to another value instantaneously, that is the transition time is assumed to be zero.
A) COMBINATIONAL SWITCHING CIRCUITS:
= The output depends only on the present inputs.
* They have no memory.
B) SEQUENTIAL SWITCHING CIRCUITS
» The output depends on the present inputs as well as the present state of the circuit,
I.e., on the past values also.
= These are combinational circuits with memory.
% SEQUENTIAL SWITCHING CIRCUITS:
a) SYNCHRONOUS SEQUENTIAL CIRCUITS.: Digital sequential circuits in which the
feedback to the input for next output generation is governed by clock signals.
b) ASYNCHRONOUS SEQUENTIAL CIRCUITS: Digital sequential circuits in which the
feedback to the input for next output generation is not governed by clock signals.
DIGITAL CIRCUIT is also called as Binary signals or Logic signals.

e The digital signals are represented by two voltage bands, one band which is near a reference value
(generally 0), and the other band lies near the supply voltage.
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DIGITAL ELECTRONICS

e This is similar to the values, ‘0’ and ‘1’ or ‘false’ and ‘true’ of the Boolean domain.

e This means that at any particular time, a digital signal can represent only one binary digit.

e The manner in which a logic circuit responds to an input as referred to as the circuit logic.
Application:

e Thermometer, photocopies, landline telephones, audiotape recorders, television, computers,
laptops, mobile phones, wristwatches, wall clocks, are all becoming digital nowadays.
e Itincreases the accuracy of the message as well as makes it easy to read.
Advantages of Digital system or signals:

e Because of the digital nature, the signals in the digital systems can travel significantly faster over
digital lines as compared to the Analog signals

e Ascompared to Analog signals, digital signals can transfer more data.

e The digital systems are less expensive, more reliable, easy to manipulate, and more flexible as

compared to the Analog system.
e A digital system can be made compatible with other digital systems to which is not possible in the

Analog system.

1. THE DECIMAL SYSTEM
The decimal number system comprises digits from 0-9 that are 0,1, 2, 3,4, 5,6, 7, 8 & 9. The base or radix of the decimal

number system is 10 because the total number of digits available in the decimal number system is 10. All the other digits can
be expressed with the help of these 10 digit numbers.

number 345 represents:
=3%10% + 4«10t +5x10°
=3%100+4+1045
=300+40+5
= 34
the value 123.456 means:

=1%10242%101+3%10°+ 4% 1071+ 5102 + 6% 107°
=100+20+3+0.4+0.05+0.006

2. THE BINARY SYSTEM
Binary number system can be said to be the simplest one in the number system. It uses only two digits (0 and 1) to represent

a number. Thus, as the bi'in its name suggests, the system Uses 2 as a hase. The entire number system can be represented
through the binary system. For example, fractions, real numbers, as well as large numbers, can be represented through

binary numbers,

BINARY TO DECIMAL CONVERSION

The binary numbering system works just like the decimal numbering system, with two exceptions:

e binary only allows the digits 0 and 1 (rather than 0-9), and
e binary uses powers of two rather than powers of ten.
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DIGITAL ELECTRONICS

Therefore, it is very easy to convert a binary number to decimal. For each “1” in the binary string, add 2n

where “n” is the bit position in the binary string (0 to n—1 for n bit binary string).

For example, the binary value 1010 represents the decimal 10 which can be obtained through the

procedure shown in the table 1:

Table 1

Binary No. 1 0 1 0
Bit Position (n) 3 2nd 1%t Oth
Weight Factor (2n) 23 22 2! 20
bit * 2n 1%23 0*22 1*21 0*2°
Decimal Value 8 0 2 0

Decimal Number8 +0+2+0=10

All the steps in above procedure can be summarized in short as

1*23 4+ 0*%22+ 1*21 + 0*2°=8+ 0+ 2 + 0 = 1010

ie.,

1. Multiply each digit of the binary number by its positional weight and then add up the result.

2. If any digit is O, its positional weight is not to be taken into account.

DECIMAL TO BINARY CONVERSION

let us find out binary of 19, (decimal 19).

Division Dividend Remainder

1

19/2 9

9/2‘/4 1

4/2‘/2 0

2/2‘/1 0

1/2/%] l—l L
100

Dividend is 0, stop the procedure.

3. OCTAL NUMBERING SYSTEM:

e The octal number system uses base 8 instead of base 10 or base 2.

1. The right most bit in a binary number is bit position zero.
2. Each bit to the left is given the next successive bit number.

* An eight-bit binary value uses bits zero through seven:
Billx6 X5 X4X3X2X1 K

* A 16-bit binary value uses bit positions zero through fifteen:
B X14 X13X12XI1 X10X9 X8 X7 X6 X5 X4 X3 X2 X1 Kl

 Bit zero is usually referred to as the low order bit.

or

Least significant bit (LSB).
* The left-most bit is typically called the high order bit.

or

Most significant bit (msh)

e This is sometimes convenient since many computer operations are based on bytes (8 bits). In octal,

we have 8 digits at our disposal, 0-7.
DECIMAL OCTAL

0 0
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Octal to Decimal,
Converting octal to decimal 1s just like converting binary to decimal, except instead of powers of 2,
we use powers of 8.

To convert 172 1n octal to decimal: 1 7 9
g2 gl g
Weight = 182 4+ 7#81 4 2#80

1964 + 748 + 2°1
122,

Decimal to Octal Conversion,

Converting decimal to octal 1s just like converting decimal to binary, except instead of dividing by 2,
we divide by 8.

To convert 122 to octal:

122/8 = 15 remainder 2
158 = 1 remainder 7
/8 = 0 remainder 1

172,

Octal to binary

Convert (145056)s to binary.

To convert from octal to binary and vice versa we will need this conversion table.
value (145056)s can be converted to binary as (001 100 101 . 101 110)»

OCTAL SYMBOL BINARY CODE

000
001
010
011
100
101
110

N 0 s W N RO

111
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Binary to Octal:

DIGITAL ELECTRONICS

We can use the same table to convert a binary number to octal number. And for that, we first have to group the binary

number into a group of three bits and write the octal equivalent of it.

Convert the binary number (11001111)»> to octal

The three bit group of binary numbers can be written as 011,001,111
because we have to add a zero before each number to complete the

in the form of three binary digits. Therefore, the octal numbers will be

3,1, 7i.e., (317)s

3. HEXADECIMAL NUMBERING SYSTEM

» Hexadecimal uses a base 16 numbering system. This means that we have 16 symbols to use for

digits. Consequently, we must invent new digits beyond 9.

* The digits used in hex are the letters A, B, C, D, E, and F.

Hexa decimal to Decimal
Converting hex to decimal 1s just like converting binary to decimal, except
instead of powers of 2, we use powers of 16.

To convert 15E in hex to decimal:

1 5 E

160 16! 16
1¥16% + 5¢16" + 14*16"
1%256 + 5¥16 + 14%1
350y,

Weight

Decimal to Hex Conversion
Converting decimal to hex is just like converting decimal to binary, except
mnstead of dividing by 2, we divide by 16. To convert 350 to hex:

35016 = 21 remainder 14 = E
2116 = 1 remainder 5
116 = 0 remainder 1

0
1
2
3
4
5
6
7
8
9

T T A T S T O Y
U A W N e O

m MmO 0O e > W 00N Y 1B W N2 O

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
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Hexa to Octal

A group of 4-bits represent a hexadecimal digit and a group of 3-bits represent an octal digit.
1. Convert the given hexadecimal number into binary.
2. Starting from right make groups of 3-bits and designate each group an octal digit.

. Convert (1A3),, into octal. 1. Converting hex to binary

(1A3), = 0001 1010 0011

3
2. Grouping of 3-bits
(1A8),5 = 08_0 %0 130 %
0 6 4 3
S0 (1A3),; = (0643)y= (643),

Octal to Hex Conversion
1. Convert the given octal number into binary.
2. Starting from right make groups of 4-bits and designate each group as a Hexadecimal digit.

Convert (76)g into hexadecimal. Solution. 1. Converting octal to binary

2. Grouping of 4-bits

(76)g = lTl 11¢10 = 0(111 1110
3 E 3 E

(76)g = (3E)q

THE BINARY ARITHMETIC OPERATIONS

* Binary arithmetic's are simpler than decimal because they mvolve only two digits (bits) 1 and 0.
* Addition, subtraction, multiplication and division.

Binary Addition Binary subtraction
Augend Addend Sum Carry Result Minuend | Subtrahend | Difference | Borrow
0 0 0 0 0 0 0 0
1 1 0 1 0 1 1l 1
1 0 1 0 1 1 0 1l 0
1 1 0 1 10 1 1 0 0
(i) Add 1010 and 0011 (ii) Add 0101 and 1111 (i) Subtract 0100 from 1011 (i) Subtract 0170 from 1001
111 « Car 1 «Borrow 1 1 <« Borrow
0101 2 111 «Camry 1 0 1 1 «Minuend 1 0 0 1 «Minuend
1111 0101 -0 1 0 0 «Subtrahend -0 1 1 0 «Subtrahend
I. 10 +1111 0 1 1 1 «Difference 0 0 1 1 «Difference
0100 10100 1 1 1 Tt 11
T T Cﬂ Cz C1 Co G G G G

The rules are still the same as in decimal, except that
the borrow in a given significant position adds 2 to
a minuend digit.
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Binary multiplication

Binary division.

0 0 0

1 0 0 X Y IFX<Y, Q=1
1 1 1 X Y IFX>Y, Q=0
0 1 0
(i) Multiply 1001 with 101 Binary division is also similar to decimal division
100 1 «— MULTIPLICAND - 101 -
101 — MULTIPLIER Divisor—1 0 0 lj} g é i (0 1 «— Dividend
1001 Partial Product when multiplier bit=1 xx1001
0000 x ; Partial Product when multiplier it = 0 1001
1001xx X X X X

101101 «— FINAL FRODUCT

NEGATIVE NUMBERS AND THEIR ARITHMETIC

So far, we have discussed straight forward number representation which are nothing but positive number.
The negative numbers have got two representation

% Complement representation. In digital computers to simplify the subtraction operation & for logical
manipulation complements are used. There are two types of complements used in each radix system.
o The radix complement or r’s complement
o The diminished radix complements or (r-1)’s complement

r’s Complement and (r — 1)°’s Complement

The r’s and (r — 1)’s complements are generalized representation of the complements. r stands for
radix or base of the number system; thus, r’s complement is referred as radix complement and (r —
1)’s complement is referred as diminished radix complement. Examples of r’s complements are 2’s
complement and 10’s complement. Examples of (r — 1)’s complement are 1’s complement and 9’s

In a base-r system. the s and (r — 1)z complement of the number W having n digits,
can be defined as:

|fr - 1Vs complement of N = (r® - 1) = N I

and r's complement of N = 7 - N

= (r - 1)s complement of N + 1

The (r — 1)s complement can also be obtained by subtracting each digit of N from
r—1. Using the above methodology we can also define the T's and &8s complement for octal
gystem and 15'= and 16’s complement for hexadecimal system.

+« Sign magnitude representation : Representation of signed no’s binary arithmetic in computers: Two
ways of representation of signed no’s Sign Magnitude for Complemented form, Two complimented
forms: 1‘s compliment form, & 2‘s compliment form
I’'s and 2’s Complement. These are the complements used for binary numbers. Their
representation are very important as digital systems work on binary numbers only.

1’s Complement

bit Actual binary complement
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I’s complement of a | /’s Complement |1 0 binary number is
obtained simply by replacing each 1 by 0
and each 0 by 1. 0 1 Alternately, I’s
complement of a binary can be

obtained by subtracting each bit from 1.

EX: Find 1’s complement of (i) 011001 (ii) 00100111
Sol: (i) Replace each 1 by 0 and each 0 by 1
011001
WL
100110
So, 1’s complement of 011001 is 100110.
2’s Complement: 2’s complement of a binary number can be obtained by adding 1 to its 1’s complement.

EX: Find 2’s complement of (i) 011001 (ii) 010110016

Solution.
(i) 01 1 0 0 1 ¢ Number @ 0101100 ¢ Number
1001 1 0 &1scomplement 1010011 «!scomplement
+ 1 «Add1toTscomplement + 1 «Add1to I's complement
100111 «25complement 1010100 «25scomplement

Subtraction Using 1’s and 2’s Complement

Before using any complement method for subtraction equate the length of both minuend and subtrahend
by introducing leading zeros.

1’s complement subtraction following are the rules for subtraction using 1’s complement.
1. To do the subtraction (M-S), represent the M&S in equal no. of digits.
2. Add 1’s complement of subtrahend to minuend.

3. If a carry is produced by addition, then add this carry to the LSB of result. This is called as end around
carry (EAC).

4. If carry is generated from MSB in step 2 then result is positive. If no carry generated result is negative,
and is in 1’s complement form.

EX: Perform binary subtraction for (23)10-(11)10
Sol: M=23, 10111
S=11,1011
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Step 1: represent the M&S in equal no. of digits. 10111=23
01011=11
Step 2: 1’s complement of subtrahend (01011) = 10100
Add 1’s complement of subtrahend to minuend 10111= M
+ 10100=1’S Comp of S

101011

Carry,

Step3: If a carry is produced by addition, then add this carry to the LSB of result.
01011
+ 1
01100 =12

2’s complement Subtraction o

Method of 2’s complement is similar to 1’s complement subtraction except the end around carry (EAC).
The rules are listed below:

1. To do the subtraction (M-S), represent the M&S in equal no. of digits.

2. Take 2’s complement of subtrahend. Add 2’s complement of subtrahend to minuend.
3. If a carry is produced, then discard the carry and the result is positive. If no carry is produced result is
negative and is in 2’s compliment form.

EX: Perform binary subtraction for (22)10-(12)10 Using 2’s complement
Sol:  M=22,10110

S=12, 1100
Step 1: represent the M&S in equal no. of digits. 10110=22

01100=12

Step 2: 2°s complement of subtrahend (01100) = 10100

Add 2’s complement of subtrahend to minuend 10110=M

+ 10100=1"S Comp of S

101010

Carrya

(Neglected)

Step 3: If a carry is produced, then discard the carry and the result is positive = (01010) = (10)10

Signed Binary Representation

Untill now we have discussed representation of unsigned (or positive) numbers, except one or two places.
In computer systems sign (+ve or —ve) of a number should also be represented by binary bits.

The accepted convention is to use 1 for negative sign and 0 for positive sign. In signed representation
MSB of the given binary string represents the sign of the number, in all types of representation. We have
two types of signed representation:
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1. Signed Magnitude Representation
2. Signed Complement Representation
sign magnitude representation.

In a signed-magnitude representation, the MSB represent the sign and rest of the bits represent the
magnitude. e.g.,

+6=(0 1_1‘_(}1].z =1 1—01—1]2
Magnitude T Megnitude
+ sign —sign Note that positive number is represented similar to unsigned number.
From the example it is also evident that out of 4-bits, only 3-bits are used to represent the magnitude.

What is sign magnitude of +5 and -7? Sol: actual number 5 is 0101 in binary number system.

m N But to rep.resent. mgned number in computer it has to
. represent in 8-bit binary number then

il 5 —~ 0000101 , 8 bitbinary
- Is(1) X +5 _, |0p000101 .,  signed magnitude for
positive
-5 — |IP000101 —»  signed magnitude for
negative

Complement of signed magnitude representation

In a signed-complement representation the positive numbers are represented in true binary form with
MSB as 0. Whereas the negative numbers are represented by taking appropriate complement of equivalent
positive number, including the sign bit. Both 1’s and 2’s complements can be used for this purpose e.g.,

+5 = (0101),
-5 =(1010);2 «in 1’s complement

= (1011)2 «in 2’s complement

2% complement signed magnitude number

W Of actual number I’s cqmplement of signed
<ol X — magnitude number

el ) — [II111011 —  2’s complement of signed
sl X L magnitude number

9°s and 10°’s Complement

9’s and 10’s complements are the methods used for the representation of decimal numbers. They are
identical to the 1’s and 2’s complements used for binary numbers.

9’s complement: 9°s complement of a decimal number is defined as (10n — 1) — N, where n is no. of digits
and N is given decimal numbers. Alternately, 9’s complement of a decimal number can be obtained by
subtracting each digit from 9.

9’s complement of N = (10"-1) —N
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EX: Find out the 9’s complement of (36)1o.
Sol: By using (10"-1) — N; n = 2. So, (10"-1) — N = (100 — 1) — 36=63

By subtracting each digit from 9

m{o o

9
L&
= So, 9s complement of 36 iz 63.

10’s complement: 10’s complement of a decimal number is defined as 10" — N.10’s complement of N =
10"-N (or)

10" - N =(10"—-1) — N + 1= 9’s complement of N + 1. Thus, 10’s complement of a decimal number can
also be obtained by adding 1 to its 9’s complement.

EX: Find out the 10’s complement of (36)1o.

Solution. By adding 1 to 9= complement
s complement of 36

Hence, 10's complement of 36

CODES

Coding and encoding is the process of assigning a group of binary digits, commonly referred to as ‘bits’,
to represent, identify, or relate to a multivalued items of information. In short, a code is a symbolic
representation of an information transform. The bit combination is referred to as ‘CODEWORDS’.

In a broad sense we can classify the codes into five groups:

(i) Weighted Binary codes (ii) Non-weighted codes (iii) sequential codes(iv) Error—detecting codes

(v) Error—correcting codes (vi) Alphanumeric codes
1) Weighted Binary Codes

In weighted binary codes, each position of a number represents a specific weight. The bits are multiplied
by the weights indicated; and the sum of these weighted bits gives the equivalent decimal digit.

a) Straight Binary coding: is a method of representing a decimal number by its binary equivalent. A
straight binary code representing decimal 0 through 7

Decimal Three bit straight Weights MOI Sum
Binary Code 2 2 2
0 000 ] 0 0 0
1 001 ] 0 1
2 010 0 2 0 a2
3 011 0 2 1 3
4 100 4 0 0 +
5 101 4 0 1 5
& 110 4 2 0 6
7 m 4 2 1 T

b) Binary Codes Decimal Codes (BCD codes). In BCD codes, individual decimal digits are coded in
binary notation and are operated upon singly. Thus, binary codes representing 0 to 9 decimal digits
are allowed. Therefore, all BCD codes have at least four bits (-~ min. no. of bits required to encode
to decimal digits = 4) For example, decimal 364 in BCD
3—0011
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6 — 0110
4 — 0100

364 — 0011 0110 0100

However, we should realize that with 4 bits, total 16 combinations are possible (0000, 0001, ..., 1111) but
only 10 are used (0 to 9). The remaining 6 combinations are invalid and commonly referred to as
‘UNUSED CODES’

i) Non weighted codes

Non weighted codes are codes that are not positionally weighted. That is, each position within the binary
number is not assigned a fixed value. Ex: Excess-3 code, Gray code.

Excess-3 Code

Excess-3 is a non-weighted code used to express decimal numbers. The code derives its name from the
fact that each binary code is the corresponding 8421 code plus 0011(3).
[643],, into X53 code
Decimal 6 4 3
Add Ftoeach 3 3 3
7 6

Sum 9
Converting the sum into BCD code we have
9 T ]
1 1 1

1001 0111 0110
Hence, X533 for [643],;, = 1001 0111 0110

Gray Code

The Gray code belongs to a class of codes called minimum change codes, in which only one bit in the
code changes when moving from one code to the next. The Gray code is non-weighted code, as the
position of bit does not contain any weight. The Gray code is a reflective digital code which has the
special property that any two subsequent numbers codes differ by only one bit. This is also called a unit-
distance code. In digital Gray code has got a special place.

Gray codes™

Decirmal Three bit Four bit Decirmal Three bt Four bit
Irigie GFray code Gray code Mgk Giray code Gray cade
0 000 0000 8 - 1100
1 001 0001 9 - 1101
2 011 0011 10 - 1111
3 010 0010 11 - 1110
4 110 0110 12 - 1010
5 111 0111 13 - 1011
6 101 0101 14 - 1001
7 100 0100 15 - 1000
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Binary to Gray conversion:

N bit binary no i

s rep by

Gray code equivalent is by

Bn Bn.[ S
Gn Go.

— B

| o Gy
B... Gpare the MSB*s then the gray code bits are obtaind from the binary code as

DIGITAL ELECTRONICS

Gn-1=Bn

@ Bn-1

Gn-2=Bn.

1 @B n-

——————————— G]:B2$Bl

—EX-or symbol

Procedure: ex-or the bits of the binary no with those of the binary no shifted one position to the
right . The LSB of the shifted no. is discarded & the MSB of the gray code no.is the same as the
MSB of the original binaryno.

55

e D

EX: 10001
(a). Binary 1 —0 -0 —l
Gray | | 0 1
(b). Binary: 1 0 0 1
Shifted binary: | 0 0 (1)
1 1 0 l—gray
Gray to Binary Conversion:
If an n bit gray no. is rep by G, Gp-j o G
its binary equivalent by B, By B then the binary bits are obtained from gray bitsas
£ P Pt
Bu= Gn Bn-1-B.9?G,, |Bn2=G,, |- Bl =B, 7
Gy

To convert no. in any system into given no. first convert it into binary & then binary to gray. To
convert gray no into binary no & convert binary no into require no system.

Ex:10110010(gray) = 11011100:= DC=3343=22010

EX:1101
Gray:

Binary

.1

1

!

ﬂ|.

0

il

s B

0

0

_/,T

D

Ex:  3A7,6=0011.1010,0111,=1001110100(gray)
5275=101,011,011,=111110110(gray)
65210=10100011002= 1111001010(gray)
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XS-3 gray code:

In anormal gray code , the bit patterns for 0(0000) & 9(1101) do not have a unit
distance between them i.e, they differ in more than one position.In xs-3 gray code ,
each decimal digit is encoded with gray code patter of the decimal digit that is greater
by 3. It has a unit distance between the patterns for 0 & 9.

XS-3 gray code for decimal digits 0 through 9

Decimal digit Xs-3 gray code Decimal digit Xs-3 gray code
0 0010 5 1100
1 0110 6 1101
2 0111 7 1111
3 0101 8 1110
4 0100 9 1010

1ii) Sequential Codes

A code is said to be sequential when two subsequent codes, seen as numbers in binary representation,
differ by one. This greatly aids mathematical manipulation of data. The 8421 and

Excess-3 codes are sequential, whereas the 2421 and 5211 codes are not.

Binary coded decimal (bcd) and its arithmetic:

The BCD is a group of four binary bits that represent a decimal digit. In this representation each digit of a
decimal number is replaced by a 4-bit binary number (i.e., a nibble). Since a decimal digit is a number
from 0 to 9, a nibble representing a number greater than 9 is invalid BCD. For example (1010)2 is invalid
BCD as it represents a number greater than 9.

Decimal Binary Representation BCD Representation

Number
0 0000 0000
1 0001 0001
2 0010 0010
3 0011 0011
4 0100 0100
5 0101 0101
6 0110 0110
7 0111 0111
8 1000 1000
9 1001 1001
10 1010 0001 0000
1 1011 0001 0001
12 1100 0001 0010
13 1101 0001 0011
14 1110 0001 0100
15 1111 0001 0101
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BCD Addition: In many application it is required to add two BCD numbers. But the adder circuits used
are simple binary adders, which does not take care of peculiarity of BCD representation. Thus one must
verify the result for valid BCD by using following rules:

1. If Nibble (i.e., group of 4-bits) is less than or equal to 9, it is a valid BCD number.

2. If Nibble is greater than 9, it is invalid. Add 6 (0110) to the nibble, to make it valid. Or If a carry was
generated from the nibble during the addition, it is invalid. Add 6 (0110) to the nibble, to make it valid.

3. Ifacarry is generated when 6 is added, add this carry to next nibble.

EX: Add the BCD numbers i)1000 and 0101 and ii) 00011001 and 00011000

Solution. 1000 — B (i) 1 +— Carry generated from niltle
+ 0101 — 4+ 5 0001 1001— 13
1101 1B o0onol 1000— ﬂ
Since, (1101); > (9);; add 6 (0110) to it 001ll 0001t ﬂ
So, 1101 Since, a carry is generated from right most nibble we must add 6 (0110) to it.
011¢0¢ So, pqgli paa1
JL o0 11 011¢
1 3 D011 0111—={8N
So, result = 00010011 So, result = 00110111

BCD Subtraction:

The best way to cary out the BCD subtraction is to use complements. e. Although any of the two
complements can be used, we prefer 10’s complement for subtraction. Following are the steps to be
followed for BCD subtraction using 10’s complement:

1. Add the 10’s complement of subtrahend to minuend.

2. Apply the rules of BCD addition to verify that result of addition is valid BCD.

3. Apply the rules of 10’s complement on the result obtained in step 2, to declare the final result i.e.,
to declare the result of subtraction.

Ex: Subtract 61 from 68 using BCD.

Solution. To illustrate the process first we perform the subtraction using 10’s comple ment in decimal
system. After that we go for BCD subtraction.

we have, D = 68 — 61
So, 10’s complement of 61 =99 — 61 + 1 = 39

So, 10’z complement of 61 = 99 — 61 + 1 = 39
So, 6 &
+39
107
T
Carry
In 10°s complement if an end carry is produced then it is discarded and result is declared
positive. So,

D = +07
by using BCD
1.
BCD of 68 = ]
a

1
10100
BCD of39 = 11100

1 o a0 0

2. Check for valid BCD- since a carry is generated from right most nibble, we must add
6 (0110) to it. Since the left most nibble is greater than 9, we must add 6(0110) to it

Thus, 1 a1 dada oaa01 | MREC(A)
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(a) 8421 BCD code, sometimes referred to as the Natural Binary Coded Decimal Code (NBCD);
(b)* Excess-3 code (XS3); adding 3 to BCD gives the Excess -3 code.
(c)** 84 -2 -1 code (+8, +4, -2, -1);

(d)24 21 code

Table BCD codes

Decirmal s427 Freess-3 B4-2_1 2421
Dhgeit INEBCIY ) code (XS3) codle cole
L] LTl ln] o011 o000 Q000

1 o001 0100 0111 Q001

2 0010 0101 0110 Q010
3 o011 0110 0101 0011
4 01D 0111 0100 0100
b 0101 1000 1011 1011
& o110 1001 1010 1100

T 0111 1010 1001 1101

B 100D 1011 1000 1114
o9 1001 1100 1111 1111
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Codas

l # l | J; |

Weighted Non-weighied Reflective Saquential Alphammmers  Error detecting

| and correcting
Homm
Excess-3 Gray  Five-bit a4 Excess-3 e
BCD codes
} f
1 { ASCHl  EBCDIC  Hollerith
242 5211 Excess-d

1 |

Binary BCD

R TR T T N

B421 2421 3321 4221 5211 5311 5421 63N 7421 7421 p4dd

Binary codes block diagram

Error — Detecting codes: When binary data is transmitted & processed,it is susceptible to noise
that can alter or distort its contents. The 1‘s may get changed to 0‘s & 1‘s .because digital
systems must be accurate to the digit, error can pose a problem. Several schemes have been
devised to detect the occurrence of a single bit error in a binary word, so that whenever such
an error occurs the concerned binary word can be corrected & retransmitted.

Parity: The simplest techniques for detecting errors is that of adding an extra bit known as
parity bit to each word being transmitted.Two types of parity: Oddparity, evenparity forodd
parity, the parity bit is set to a _0‘ or a _1‘ at the transmitter such that the total no. of 1 bit
in the word including the parity bit is an odd no.For even parity, the parity bit is set to a _0°
or a _1‘ at the transmitter such that the parity bit is an even no.

Decimal 8421 code Odd parity Even parity
0 0000 1 0
1 0001 0 il
2 0010 0 il
3 0011 1 0
4 0100 0 il
5 0100 1 0
6 0110 1 0
7 0111 0 il
8 1000 0 il
¢ 1001 1 0
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When the digit data is received . a parity checking circuit generates an error signal if
the total no of 1‘s is even in an odd parity system or odd in an even parity system. This parity
check can always detect a single bit error but cannot detect 2 or more errors with in the same
word.Odd parity is used more often than even parity does not detect the situation. Where all
O‘s are created by a short ckt or some other fault condition.

Ex: Even parity scheme

(a) 10101010 (b) 11110110 (c)10111001

Ans:
() No. of 1's in the word is even is 4 so there is no error
(b) No. of 1's in the word is even is 6 so there is no error
(c) No. of 1's in the word is odd is 5 so there is error

Ex: odd parity
(2)10110111 (b) 10011010  (c)11101010

Ans:
(a) No. of 1's in the word is even is 6 so word has error
(b) No. of 1's in the word is even is 4 so word has error
(c) No. of 1‘s in the word is odd is 5 so there is no error

Checksums:

Simple parity can‘t detect two errors within the same word. To overcome this, use a
sort of 2 dimensional parity. As each word is transmitted, it is added to the sum of the
previously transmitted words, and the sum retained at the transmitter end. At the end of
transmission, the sum called the check sum. Up to that time sent to the receiver. The receiver
can check its sum with the transmitted sum. If the two sums are the same, then no errors
were detected at the receiver end. If there is an error, the receiving location can ask for
retransmission of the entire data, used in teleprocessing systems.

Block parity:

Block of data shown is create the row & column parity bits for the data using
odd parity. The parity bit 0 or 1 is added column wise & row wise such that the total
no. of 1‘s in each column & row including the data bits & parity bit is odd as
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Data Parity bit data

10110 0 10110
10001 1 10001
10101 0 10101
00010 0 00010
11000 1 11000
00000 1 00000
11010 0 11010

Error —Correcting Codes:

A code is said to be an error —correcting code, if the code word can always be deduced from an
erroneous word. For a code to be a single bit error correcting code, the minimum distance of that code
must be three. The minimum distance of that code is the smallest no. of bits by which any two code
words must differ. A code with minimum distance of 3 can‘t only correct single bit errors but also
detect ( can‘t correct) two bit errors, The key to error correction is that it must be possible to detect &
locate erroneous that it must be possible to detect & locate erroneous digits. If the location of an error
has been determined. Then by complementing the erroneous digit, the message can be corrected ,
error correcting , code is the Hamming code , In this , to each group of m information or message or

data bits, K parity checking bits denoted by P1,P2,---------- pk located at positions 2 K1 trom left are
added to form an (m+k) bit code word.

To correct the error, k parity checks are performed on selected digits of each code
word, & the position of the error bit is located by forming an error word, & the error bit

is then complemented. The k bit error word is generated by puttingaOoralinthe?2 k-

Lth position depending upon whether the check for parity involving the parity bit Pk is
satisfied or not.Error positions & their corresponding values :
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Error Position For 15 bit code For 12 bit code For 7 bit code
CsC3C2Cs CiC3C2Ca CsC2C1

0 D000 0000 000

il 0001 0001 001

P 0010 0010 010

3 0011 0011 011

4 0100 0100 100

5 0101 0101 101

6 DO 110 0 110 1 10

7 0 11 1 0 11 1 1 1 1

8 1 00 O 1 00 0

¢) 1 00 1 1 00 1

10 1 01 O 1 01 0

11 1 01 1 1 01 1

12 1 10 0 1 10 0

13 il 10 1

14 i 11

15 il 11 1

7- bit Hamming code:

To transmit four data bits, 3 parity bits located at positions 2021827 from
left are added to make a 7 bit codeword which is then transmitted.

The word format

Fl ‘ P2 ‘ Ds ‘P4 ‘Ds ‘D6 ‘ D~ ‘
D—Data bits P-
Parity bits
Decimal Digit For BCD For Excess-3

P1P2D3P4D5D6D7 P1P2D3P4D5D6D7

0 0 00 0 00 0 1 00 00 1 1
1 1 10 1 00 1 1 0011 0 O
2 0 10 101 1 0O 1 001 0 12
3 1 00 001 1 1 1001 10
4 1 00 110 0 0O 00 11 11
5 0 10 010 1 1 1100 0O
6 1 10 011 0 0O 01 10 01
7 0 00 111 1 1 01 10 1 O
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01100 11

0111 100

1110000

0011001
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Ex: Encode the data bits 1101 into the 7 bit even parity Hamming Code
The bit pattern is
P1P2D3P4D5D6D7

1 1 0 1

Bits 1,3,5,7 (P1 111) must have even parity, so P1 =1

Bits 2, 3, 6, 7(P2 101) must have even parity, so P2 =0

Bits 4,5,6,7 (P4 101)must have even parity, so P4 =0

The final code is 1010101

EX: Code word is 1001001
Bits 1,3,5,7 (C11001) —no error —put a 0 in the 1‘s position—C1=0
Bits 2, 3, 6, 7(C20001)) — error —put a 1 in the 2‘s position—C2=1
Bits 4,5,6,7 (C2 1001)) —no error —put a 0 in the 4‘s position—C3=0
15-bit Hamming Code: It transmit 11 data bits, 4 parity bits located 20

2l 22 23 Word format is

‘Pl‘PZ ‘Ds ‘P4 ‘Ds ‘De ‘D7 ‘Ps ‘Dg ‘DlO‘Dll‘DlZ‘DlS‘Dl4‘D15‘

12-Bit Hamming Code:lt transmit 8 data bits, 4 parity bits located at position 2051 %2
23 Word format is

‘Pl ‘Pz ‘Ds‘P4 ‘DS‘DG‘D?‘PB ‘D9‘D101D11‘D12‘

Alphanumeric Codes:

These codes are used to encode the characteristics of alphabet in addition to
the decimal digits. It is used for transmitting data between computers & its I1/0O device
such as printers, keyboards & video display terminals.Popular modern alphanumeric
codes are ASCIl code & EBCDIC code.
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MODULE -
Boolean Algebra& Boolean functions

Boolean algebra

In 1854, George Boole developed an algebraic system now called Boolean algebra. In 1938,
Claude E. Shannon introduced a two - valued Boolean algebra called switching algebra
that represented the properties of bistable electrical switching circuits. For the formal
definition of Boolean algebra, we shall employ the postulates formulated by E. V.
Huntington in 1904.

Boolean algebra is a system of mathematical logic. It is an algebraic system
consisting of the set of elements (0, 1), two binary operators called OR, AND, and
one unary operator NOT. It is the basic mathematical tool in the analysis and
synthesis of switching circuits. It is a way to express logic functions algebraically.

Axioms and laws of Boolean algebra

Axioms or Postulates of Boolean algebra are a set of logical expressions that we
accept without proof and upon which we can build a set of useful theorems.

AND Operation OR Operation NOT Operation

Axioml1: 0.0=0 0+0=0 0=1
Axiom2: 0.1=0 0+1=1 1=0
Axiom3: 1.0=0 1+0=1
Axiom4: 1.1=1 1+1=1

Complementation law

Law1: O=1Law3: if A=0,then A=1
Law2: 1=0Law4: if A=1,then =0

Law5: if =A (double inversion law)

AND Law OR Law

Lawl: A.0=0 (Null law) Lawl: A+0=A

Law2: A.1=A (Identity law) Law2: A+1=1

Law3: A.A=A (Impotence law) Law3:A+A=A(Impotencelaw)
Law4: A. A=0 Law4: A+ A=1
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Basic Theorems and Properties of Boolean algebra

Commutative law

Lawl: A+B=B+A

Associative law

Lawl: A + (B +C) = (A +B) +C
Distributive law

Lawl: A.(B + C) = AB+ AC
Absorption law

Lawl: A +AB =A

Solution: A(1+B)
A

DeMorgan Theorems

Theoreml: (A+B) =A.B
Redundant Literal Rule

Rulel: A+ A.B=A+B

Solution: A+ A.B

(A+A).(A+B) .. A+BC=(A +B).(A
+C) A+B JAHA=]

Consensus Theorem

Law2: A.B=B.A

Law2: A(B.C) = (A.B)C

Law2: A+BC = (A +B).(A +C)

Law2: A(A+B)=A

Solution: A.A+A.B
A+A.B
A(1+B)
A

Theorem2: (A.B)=A+B

Rule2: A.(A+B)=AB

Theoreml. AB+ A’C + BC = AB + A’C Theorem2. (A+B). (A’+C).(B+C) =(A+B).( A’+C)

The BC term is called the consensus term and is redundant. The consensus term is
formed from a PAIR OF TERMS in which a variable (A) and its complement (A’) are
present; the consensus term is formed by multiplying the two terms and leaving
out the selected variable and its complement
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Consensus Theorem1 Proof:

AB+A’C+BC=AB+A’C+(A+A’)BC
=AB+A’C+ABC+A’BC
=AB(1+C)+A’C(1+B)
=AB+A’C

Principle of Duality

Each postulate consists of two expressions statement one expression is
transformed into the other by interchanging the operations (+) and (-) as well as the
identity elements 0 and 1. Such expressions are known as duals of each other.

If some equivalence is proved, then its dual is also immediately true. E.g. If

we prove: (X.x)+(x’+x’)=1, then we have by duality: (x+x)- (x’.x’)=0

The Huntington postulates were listed in pairs and designated by part (a) and part
(b) in below table.
Table for Postulates and Theorems of Boolean algebra

Part-A Part-B
A+0=A A.0=0
A+1=1 A.1=A
A+A=A (Impotence law) A.A=A (Impotence law)
A+ A=1 A. A=0
=A (double inversion law)
Commutative law: A+B=B+A A.B=B.A
Associativelaw: A+ (B +C)=(A +B)+C |A(B.C) =(A.B)C
Distributivelaw: A.(B + C) = AB+ AC A +BC = (A +B).(A +C)
Absorptionlaw: A +AB =A A(A +B)= A
DeMorgan Theorem: A+B =A.B (A.B)=A+B
Redundant Literal Rule: A+ A.B=A+B A.(A+B)=AB
ConsensusTheorem:AB+A’C+BC= AB+A’C |(A+B). (A’+C).(B+C) =(A+B).( A’+C)
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Boolean Function

Boolean algebra is an algebra that deals with binary variables and logic
operations. A Boolean function described by an algebraic expression consists of
binary variables, the constants 0 and 1, and the logic operation symbols.

For a given value of the binary variables, the function can be equal to either 1 or 0.

F(vars) = expression

Set of binary Variables Operators (+, ¢, ‘)
Constants (0, 1)
Groupings (parenthesis)
Variables
Consider an example for the Boolean function
Fl=x+y’z
The function Fl is equal to 1 if x is equal to 1 or if both y’ and z are equal to 1. F1 is
equal to 0 otherwise. The complement operation dictates that when y’ =1,y = 0.

Therefore, F1=1ifx=1orify=0and z=1.
A Boolean function expresses the logical relationship between binary variables and is evaluated by

determining the binary value of the expression for all possible values of the variables.

A Boolean function can be represented in a truth table. The number of rows in the truth
table is 2", where n is the number of variables in the function. The binary combinations for the
truth table are obtained from the binary numbers by counting from 0 through 2" - 1.

Truth Table for F1

X y Z F1
O D O 0
0O D 1 1 :
D L 0 |0 l 4D* i
0 1 1 0
1. P 0O 1 y D“ }
1 p a1 |1 :
10 1 Gate Implementation of F1 =x +y’z
1 1

Note:
Q:Let afunction F() depend on n variables. How many rows are there in the truth table of F() ?

A:2" rows, since there are 2" possible binary patterns/combinations for the n variables.
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Truth Tables

Enumerates all possible combinations of variable values and the corresponding
function value

Truth tables for some arbitrary functions

F1(x,y,z), F2(x,y,z), and F3(x,y,z) are shown to the below.

K y 4 F1 R2 Rs
D D D D 1 1
D D L D d il
D L D D d 1
D L L D 1 1
L D D D ] 0
I D L D ] Qg
I L D D d Qg
L L L L d il

Truth table: a unigue representation of a Boolean function

If two functions have identical truth tables, the functions are equivalent (and
vice - versa).

Truth tables can be used to prove equality theorems.

However, the size of a truth table grows exponentially with the number of variables
involved, hence unwieldy. This motivates the use of Boolean Algebra.

Boolean expressions-NOT unique

Unlike truth tables, expressions epresenting a |F |G
Boolean function are NOT unique. A
+ Example: D |10 |0 -
— F(X,)y,z) = X’ey’eZ’ + X’oyez’ + Xoy*Z’
= G(X,y,2) =X’y’*Z’ +yz’ P PP
* The corresponding truth tables D |1 |0 !
for F() and G() are to the right.
They are identical. p 1 |1 0|0
* Thus, F() =G() 1 o lo lo lo
1 |0 |2 [0 |O
1 |11 |2 [0 |O

| MREC(A)



DIGITAL ELECTRONICS

Algebraic Manipulation (Minimization of Boolean function)

* Boolean algebra is a useful tool for simplifying digital circuits.

* Why do it? Simpler can mean cheaper, smaller, faster.
« Example: Simplify F = x’'yz + xX’yz’ + xz.
F=Xx'yz + xX’yz’ + xz
=x"y(z+2’) + xz
=x’y*1 + xz
=X’y + xz

+ Example: Prove
X'y’z’ + X’yz’ + xyz’ = X°z2’ + yz’
* Proof:
X'y'z’+ x’yz’+ xyz’
=xX’y’Z’ + X'yz’ + X’'yz’ + xyz’
=X°Z'(y'+y) + yz'(x’+x)
=X'Z'*1 + yz'*1
=X'2 +yZ’

Complement of a Function

The complement of a function is derived by interchanging (» and +), and (1 and
0), and complementing each variable.
Otherwise, interchange 1s to Os in the truth table column showing F. The
complement of a function IS NOT THE SAME as the dual of a function.
Example

* Find G(x,y,z), the complement of F(x,y,z) =

xy’z’ + xX’yz Ans: G = F’ = (xy’z2’ + x’yz)’

= (xy’z’)’  (X’yz)’ DeMorgan
= (X’+y+z) * (x+y’+2’) DeMorgan again
Note: The complement of a function can also be derived by finding the
function’s dual, and then complementing all of the literals
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Canonical and Standard Forms

We need to consider formal techniques for the simplification of Boolean functions.
Identical functions will have exactly the same canonical form.

Minterms and Maxterms

Sum - of - Minterms and Product - of -

Maxterms Product and Sum terms

Sum - of - Products (SOP) and Product - of - Sums (POS)

Definitions

Literal: A variable or its complement

Product term: literals connected by

Sum term: literals connected by +

Minterm: a product term in which all the variables appear exactly once, either complemented
or uncomplemented.

Maxterm: a sum term in which all the variables appear exactly once, either complemented

or uncomplemented.

Canonical form: Boolean functions expressed as a sum of Minterms or product of Maxterms
are said to be in canonical form.

Minterm

Represents exactly one combination in the truth table.

Denoted by mj, where j is the decimal equivalent of the minterm’s corresponding
binary combination (bj).

A variable in mjis complemented if its value in bjis 0, otherwise is uncomplemented.

Example: Assume 3 variables (A, B, C), and j=3. Then, bj =011 and its corresponding
minterm is denoted by mj = A’BC

Maxterm

Represents exactly one combination in the truth table.

Denoted by M;j, where j is the decimal equivalent of the maxterm’s corresponding binary
combination (bj).

A variable in M;j is complemented if its value in bj is 1, otherwise is uncomplemented.

Example: Assume 3 variables (A, B, C), and j=3. Then, bj =011 and its corresponding
maxterm is denoted by M; = A+B’+C’
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Truth Table notation for Minterms and Maxterms
* Minterms and Maxterms are easy to denote using a truth
table. Example: Assume 3 variables x,y,z (order is fixed)

Minterm Maxterm

X’y’z’ = mo X+y+z = Mo

X'y’'z=m1 X+y+z’ = M1

xX'yz’ = m2 X+y’+z = M2

xX’yz = m3 x+y’+z’= Ms

Xy’'z’ =m4 X'+y+z = Mas

Xy’z = ms xX'+y+z’ = Ms

XyzZ’=mes | X’+y’+z=Ms

P ITFRP]FRP]FRP]JTO]JTO]JTO] O X
=l =l E=l E=l = = K=l E=l S

PO FRP|[OIFRP]O]F O| N

Xyz = mz xX'+y’+z’ = Mz

Canonical Forms
« Every function F() has two canonical forms:
— Canonical Sum - Of - Products (sum of minterms)
- Canonical Product - Of - Sums (product of maxterms)
Canonical Sum - Of - Products:

The minterms included are those mj such that F() = 1 in row j of the truth table for F().

Canonical Product - Of - Sums:

The maxterms included are those M; such that F() = 0in row j of the truth table for F().

Example alblc|f
Consider a Truth table for fi(a,b,c) at ololol o
right The canonical sum - of - products
form for f1is fi(a,b,c) =mi+ m2 + ma + me 0|01 ]1
=a’b’c + a’bc’ + ab’c’ + abc’ 0/1(01
The canonical product - of - sums 0 1111 o0
form for f1is fi(a,b,c) =Mo* Mz * Ms
1001
M7
= (at+b+c)*(a+b’+c’)s (a’+b+c’)¢(a’+b’+c’). 10110
1101
* Observe that: mj =M/’ —‘—‘ ‘
1111110
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Shorthand: ) and []
+  fi(a,b,c) => m(1,2,4,6), where } indicates that this is a sum - of - products form,
and m(1,2,4,6) indicates that the minterms to be included are m1, mz, mas, and me.
+ fi(a,b,c) =[] M(0,3,5,7), where [] indicates that this is a product - of - sums form,
and M(0,3,5,7) indicates that the maxterms to be included are Mo, M3, Ms, and M.
* Since mj = My’ for any j,
> m(1,2,4,6) =[] M(0,3,5,7) = fi(a,b,c)
Conversion between Canonical Forms
* Replace Y with [] (or vice versa) and replace those j’s that appeared in the original
form with those that do not.
*  Example:
fi(a,b,c)=a’b’c + a’bc’ + ab’c’ + abc’
=mi1+mz2+m4+ Me
=5(1,2,4,6)
=[1(0,3,5,7)
= (at+b+c)s(atb’+c’)¢(a’+b+c’)s(a’+b’+c’)
Standard Forms

Another way to express Boolean functions is in standard form. In this configuration, the
terms that form the function may contain one, two, or any number of literals.

There are two types of standard forms: the sum of products and products of sums.

The sum of products is a Boolean expression containing AND terms, called product terms,
with one or more literals each. The sum denotes the ORing of these terms. An example of a
function expressed as a sum of products is

F1=y’ +xy + x'yz’

The expression has three product terms, with one, two, and three literals. Their sum is, in
effect, an OR operation.

A product of sums is a Boolean expression containing OR terms, called sum terms. Each
term may have any number of literals. The product denotes the ANDing of these terms. An
example of a function expressed as a product of sums is

F2=x(y’+z)(x’ +y +2')

This expression has three sum terms, with one, two, and three literals. The product is an AND operation.
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Conversion of SOP from standard to
canonical form Example-1.

Express the Boolean function F = A + B’C as a sum of minterms.
Solution: The function has three variables: A, B, and C. The first term A is missing two variables;
therefore, A=A(B+B’)=AB+AB’
This function is still missing one variable, so
A=AB(C+C’)+AB’(C+C’)
=ABC + ABC’ + AB’C + AB’C’
The second term B’C is missing one variable; hence,
B’'C=B'C(A+A’)=AB’C+A’'B’C
Combining all terms, we have
F=A+B’C
=ABC + ABC’+ AB’C + AB’C’'+ A’'B’C
But AB’C appears twice, and according to theorem (x + x = x), it is possible to remove one of
those occurrences. Rearranging the minterms in ascending order, we finally obtain
F=A’B’C+ AB’C + AB’C + ABC’ + ABC
=ml+m4+m5+m6+m7
When a Boolean function is in its sum - of - minterms form, it is sometimes convenient to
express the function in the following brief notation:
F(A,B,C)=>m(1,4,5,6,7)

Example-2.
Express the Boolean function F = xy + x’z as a product of maxterms.
Solution: First, convert the function into OR terms by using the distributive law:
F=xy +x’z=(xy + X’)(xy + 2)
=(X +X°)y + X°)(x + Z)(y + 2)
= (X'+y)(x +Z)(y + 2)
The function has three variables: x, y, and z. Each OR term is missing one variable;
therefore, X’+y=x"+y+zz’=(X"+y+2z)(x’+y +2)
X+tz=X+z+yy' =(x+y+2zZ)(x+y’ +2)
y+tz=y+z+xx’=(x+y+z)(X’+y+2)
Combining all the terms and removing those which appear more than once, we finally
obtan F=(x+y+z)(x+y +2z)(xX’+y+z)(X’+y+2)
F= MOM2M4M5
A convenient way to express this function is as follows:
F(x, y, z) =m™M(0, 2, 4, 5)
The product symbol, 1, denotes the ANDing of maxterms; the numbers are the indices of
the maxterms of the function.
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Digital Logic Gates

Boolean functions are expressed in terms of AND, OR, and NOT operations, it is
easier to implement a Boolean function with these type of gates.

Graphic Alpebraic Truth
Name symbold function tahie
x y| F
. x . X o ol o
1 O ]
iy 1
X .y F
—_—
OR ¥ >——F Fexiy o oS
Y '—] d
: 1 0] 12
I =X |
x r
Inverier x —{>o—l-' F=x" ol 1
1 0
X F
Buffer — < P
. s ¥ o| o
1 1
x yv| F
* )n 0 ol 1
NAND y F F=(ay) o 1 "
1 0 1
L 3| @
x y| F
x »” A aae LUB ) I |
NOR . :%f F=(x+ ) -3 [
5 0 L]
i 1| 0
x y| F
Exclusive-OR X F Fe=xy' +x'y 0 0| 0
{XOR) ¥ -XEBYy 0o 1 1
- 1 0| 1
1 1 ]
v| ¥
E“'“":’:“NOR x :;D"_F F=xy+xy o ol 1
« < .
v . ¥ - (xSy) 0o 1| 0
cquivalence 1 ol o
I =9 I
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Properties of XOR Gates

« XOR (also ) : the “not - equal” function
« XOR(X)Y)=X Y =XY + XY’
« lIdentities:

- X 1=X
—XX=0
- X X'=1
* Properties:
-XY=YX
- (XY) W=X (Y W)

Universal Logic Gates

NAND and NOR gates are called Universal gates. All fundamental gates (NOT, AND,
OR) can be realized by using either only NAND or only NOR gate. A universal gate
provides flexibility and offers enormous advantage to logic designers.

NAND as a Universal Gate

NAND Known as a “universal” gate because ANY digital circuit can be
implemented with NAND gates alone.

To prove the above, it suffices to show that AND, OR, and NOT can be
implemented using NAND gates only.

NOT Gate

F= (X X) =
X wxx

¥

AND Gate

OR Gate = XY

-x_l:}]_D)_F: (x'.y:)' X_>O_'_D)2X¢Y
DT B e
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Two-variable k-map:

A two-variable k-map can have 2°=4 possible combinations of the input variables A and
B. Each of these combinations, , B,A ,AB(in the SOP form) is called a minterm. The minterm
may be represented in terms of their decimal designations — mO for , m1 for
B,m2 for A and m3 for AB, assuming that A represents the MSB. The letter m stands for
minterm and the subscript represents the decimal designation of the minterm. The
presence or absence of a minterm in the expression indicates that the output of the logic
circuit assumes logic 1 or logic 0 level for that combination of input variables.

The expression f=,+ B+A +AB , it can be expressed using min
term as F= m0+m2+m3=) m(0,2,3)

Using Truth Table:

Minterm |nputs Output
A B F

0 0 0 1

il 0 1 O

2 il 0 1

3 il 1 1

A 1 in the output contains that particular minterm in its sum and a 0 in that column
indicates that the particular mintermdoes not appear in the expression for output . this
information can also be indicated by a two-variable k-map.

Mapping of SOP Expresions:

A two-variable k-map has 22=4 squares .These squares are called cells. Each square on the k-map
represents a unique minterm. The minterm designation of the squares are placed in any square, indicates
that the corresponding minterm does output expressions. And a 0 or no entry in any square indicates

that the corresponding minterm does not appear in the expression for output.

B

A 0 1
0A'B" A'B
11AB'|AB

The minterms of a two-variable k-map
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The mapping of the expressions =) m(0,2,3)is

B
A 0 i 1 :
o 1| 0
11 | 1°
k-map of > m(0,2,3)
EX: Map the expressions f= B+A
F=mi+m2=) m(1,2)The k-map is
B
A 0 _ 1 :
0o O 1
1. 1 ’

Minimizations of SOP expressions:

To minimize Boolean expressions given in the SOP form by using the k-map, look for
adjacent adjacent squares having 1‘s minterms adjacent to each other, and combine them to
form larger squares to eliminate some variables. Two squares are said to be adjacent to each
other, if their minterms differ in only one variable. (i.e, B & A differ only in one variable. so they
may be combined to form a 2-square to eliminate the variable B.similarly all other.

The necessary condition for adjacency of minterms is that their decimal
designations must differ by a power of 2. A minterm can be combined with any number
of minterms adjacent to it to form larger squares. Two minterms which are adjacent to
each other can be combined to form a bigger square called a 2-square or a pair. This
eliminates one variable — the variable that is not common to both the minterms. For EX:

mO and m1 can be combined to yield,
fi=mO0+mil= + B= (B+
)= mOand m2 can be combined to yield,
f2=m0+m2= +=( + )=

ml and m3 can be combined to yield,
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fs= m1+m3= B+AB=B( + )=B

m2 and m3 can be combined to yield,

f4 = m2+m3=A +AB=A(B+ )=A

mo ,m1,m2 and ms can be combined to yield,

= + +A +AB

(B+ ) +A(B+ )

= +A
=1

B B B B
¥ LI 1L_Av0 1 70 1 o Fe 1 Je 1
o [ | 1 o (1| 0 oozm o 0 | O 1
1o e | W] o’ o || of 117 1fx 3

fl= f2= f3=B f4=A f5=1
The possible minterm groupings in a two-variable k-map.

Two 2-squares adjacent to each other can be combined to form a 4-square. A 4-square
eliminates 2 variables. A 4-square is called a quad. To read the squares on the map after
minimization, consider only those variables which remain constant through the square, and
ignore the variables which are varying. Write the non complemented variable if the variable is
remaining constant as a 1, and the complemented variable if the variable is remaining constant
as a 0, and write the variables as a product term. In the above figure f1 read as , because, along
the square , A remains constant as a 0, that is , as , where as B is changing from 0 to 1.

EX: Reduce the minterm f= +A +AB using mapping Expressed in terms of minterms, the given
expression is F=mo+mi+m2+ ms=m}(0,1,3)& the figure shows the k-map for f and its reduction .
In one 2-square, A is constant as a 0 but B varies from a 0 to a 1, and in the other 2-square, B is
constant as a 1 but A varies from a0to a 1. So, the reduced expressions is +B.

B
AL L »
o L | 1] e B:D>—f
. . 1o’
It requires two gate inputs for realizationlas | —
f= +B (k-map in SOP form, and logic diagram.)
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The main criterion in the design of a digital circuit is that its cost should be as
low as possible. For that the expression used to realize that circuit must be
minimal.Since the cost is proportional to number of gate inputs in the circuit in the
circuit, an expression is considered minimal only if it corresponds to the least possible
number of gate inputs. & there is no guarantee for that k-map in SOP is the real
minimal. To obtain real minimal expression, obtain the minimal expression both in SOP
& POS form form by using k-maps and take the minimal of these two minimals.

The 1‘s on the k-map indicate the presence of minterms in the output expressions, where as
the Os indicate the absence of minterms .Since the absence of a minterm in the SOP expression
means the presense of the corresponding maxterm in the POS expression of the same .when a SOP
expression is plotted on the k-map, Os or no entries on the k-map represent the maxterms. To obtain
the minimal expression in the POS form, consider the Os on the k-map and follow the procedure
used for combining 1s. Also, since the absence of a maxterm in the POS expression means the
presence of the corresponding minterm in the SOP expression of the same , when a POS expression
is plotted on the k-map, 1s or no entries on the k-map represent the minterms.

Mapping of POS expressions:

Each sum term in the standard POS expression is called a maxterm. A
function in two variables (A, B) has four possible maxterms, A+B,A+, +B, +

. They are represented as Mo, M1, M2, and M3respectively. The uppercase letter M stands for
maxterm and its subscript denotes the decimal designation of that maxterm obtained by
treating the non-complemented variable as a 0 and the complemented variable as a 1 and
putting them side by side for reading the decimal equivalent of the binary number so formed.

For mapping a POS expression on to the k-map, Os are placed in the squares
corresponding to the maxterms which are presented in the expression an d1s are placed in the
squares corresponding to the maxterm which are not present in the expression. The decimal
designation of the squares of the squares for maxterms is the same as that for the minterms. A
two-variable k-map & the associated maxterms are asthe maxterms of a two-variable k-map

The possible maxterm groupings in a two-variable k-map

>
(=]
-

>
o

1
0 1 of 1 1
1 0 1 1 0

1 0
Fl o[

1 1'[1’ 1 1’[_(1” 1|_g|’1’ 1[ﬁ’j|’ 1 o’lo’
B

o
o

|

=8 t.=A =0
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Minimization of POS Expressions:

To obtain the minimal expression in POS form, map the given POS expression on to the K-
map and combine the adjacent Os into as large squares as possible. Read the squares putting the
complemented variable if its value remains constant as a 1 and the non-complemented variable if its
value remains constant as a 0 along the entire square ( ignoring the variables which do not remain
constant throughout the square) and then write them as a sum term.

Various maxterm combinations and the corresponding reduced expressions
are shown in figure. In this fi1 read as A because A remains constant as a 0
throughout the square and B changes from a 0 to a 1. f2 is read as B‘ because B
remains constant along the square as a 1 and A changes froma0Oto al.fs
Is read as a 0 because both the variables are changing along the square.

Ex: Reduce the expression f=(A+B)(A+B*)(A‘+B‘) using mapping.

The given expression in terms of maxterms is f=1rM(0,1,3). It requires two
gates inputs for realization of the reduced expression as

ATH 5L
F=AB*

K-map in POS form and logic diagram

In this given expression ,the maxterm Mz is absent. This is indicated by a 1 on the
k-map. The corresponding SOP expression is Y m2 or AB‘. This realization is the
same as that for the POS form.

Three-variable K-map:

A function in three variables (A, B, C) expressed in the standard SOP form can have
eight possible combinations: AB C, AB C,ABC ,ABC,AB C ,AB C,ABC, and ABC. Each
one of these combinations designate d by m0,m1,m2,m3,m4,m5m6, and m7, respectively,
is called a minterm. A is the MSB of the minterm designator and C is the LSB.

In the standard POS form, the eight possible combinations are:A+B+C,
A+B+C , A+tB +CA+tB+C A+B+CA+B+C A+ B + C, A+ B + C . Each oneof
these combinations designated by Mo, M1, M2, M3, M4, M5, M6, and M7respectively
is called a maxterm. A is the MSB of the maxterm designator and C is the LSB.

A three-variable k-map has, therefore, 8(=23) squares or cells, and each square

on the map represents a minterm or maxterm as shown in figure. The small number on
the top right corner of each cell indicates the minterm or maxterm designation.
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€0 o1 1 10 8¢ o0 01 1 10

A o 1 3 2 a ] 1 3 2

0|ABEC|ABC|ABC|ABT O|lA+B+C|A+B+C| A+B+C|lA+B+C
i O A 4 ] T 5

1ABET|ABCc|aBC|ABT 1|A+B+C|A+B+C| A+B+T|A+B+C
(a) Minterms (b) Maxierms

The three-variable k-map.

The binary numbers along the top of the map indicate the condition of B and C for each
column. The binary number along the left side of the map against each row indicates the
condition of A for that row. For example, the binary number 01 on top of the second column in
fig indicates that the variable B appears in complemented form and the variable C in non-
complemented form in all the minterms in that column. The binary number 0 on the left of the
first row indicates that the variable A appears in complemented form in all the minterms in that
row, the binary numbers along the top of the k-map are not in normal binary order. They are,
infact, in the Gray code. This is to ensure that twophysically adjacent squares are really
adjacent, i.e., their minterms or maxterms differ by only one variable.

Ex: Map the expression f=: C+ + + +ABC
In the given expression | the minterms gre: C=001=m1 ; =101=ms;
=010=mz;

=110=me;ABC=111=m7.
So the expression is f=) m(1,5,2,6,7)= Y m(1,2,5,6,7). The corresponding k-map is

K-map in SOP form

Ex: Map the expression f= (A+B+C),(++) (++)A ++)(++)

In the given expression the maxterms are
:A+B+C=000=Mo; + + =101=Ms; + + = 111=M7; A + + =011=Ms3; + +

=110=Me.

So the expression is f=mM (0,5,7,3,6)= ™ M (0,3,5,6,7). The mapping of the expression is
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K-map in POS form.

Minimization of SOP and POS expressions:

For reducing the Boolean expressions in SOP (POS) form plotted on the k-map, look
at the 1s (0s) present on the map. These represent the minterms (maxterms). Look for the
minterms (maxterms) adjacent to each other, in order to combine them into larger squares.
Combining of adjacent squares in a k-map containing 1s (or 0s) for the purpose of
simplification of a SOP (or POS)expression is called looping. Some of the minterms (maxterms)
may have many adjacencies. Always start with the minterms (maxterm) with the least number of
adjacencies and try to form as large as large a square as possible. The larger must form a
geometric square or rectangle. They can be formed even by wrapping around, but cannot be
formed by using diagonal configurations. Next consider the minterm (maxterm) with next to the
least number of adjacencies and form as large a square as possible. Continue this till all the
minterms (maxterms) are taken care of . A minterm (maxterm) can be part of any number of
squares if it is helpful in reduction. Read the minimal expression from the k-map,
corresponding to the squares formed. There can be more than one minimal expression.

Two squares are said to be adjacent to each other (since the binary designations along
the top of the map and those along the left side of the map are in Gray code), if they are
physically adjacent to each other, or can be made adjacent to each other by wrapping around.
For squares to be combinable into bigger squares it is essential but not sufficient that their
minterm designations must differ by a power of two.

General procedure to simplify the Boolean expressions:

1. Plot the k-map and place 1s(0s) corresponding to the minterms (maxterms)
of the SOP (POS) expression.

2. Check the k-map for 1s(0s) which are not adjacent to any other 1(0). They are
isolated minterms(maxterms) . They are to be read as they are because they
cannot be combined even into a 2-square.

3. Check for those 1s(0S) which are adjacent to only one other 1(0) and make
them pairs (2 squares).

4. Check for quads (4 squares) and octets (8 squares) of adjacent 1s (0s) even
if they contain some 1s(0s) which have already been combined. They must
geometrically form a square or arectangle.

5. Check for any 1s(0s) that have not been combined yet and combine them
into bigger squares if possible.

6. Form the minimal expression by summing (multiplying) the product the
product (sum) terms of all the groups.

Reading the K-maps:
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While reading the reduced k-map in SOP (POS) form, the variable which
remains constant as 0 along the square is written as the complemented (non-
complemented) variable and the one which remains constant as 1 along the square
is written as non-complemented (complemented) variable and the term as a
product (sum) term. All the product (sum) terms are added (multiplied).

Some possible combinations of minterms and the corresponding minimal expressions
readfrom the k-maps are shown in fig: Here fe is read as 1, because along the 8-square no
variable remains constant. Fs is read as , because, along the 4-square formed byO,mi1m2 and ms
,the variables B and C are changing, and A remains constant as a 0. Algebraically,
fs= mo+mai+ma+ms

=+C++
=(+C)+ B(C+)

= +B
= ( +B):
BC BC BC
A 00 01 1" 10 A 00 01 1 10 A 00 01 1" 10
0 1 ] I 0 1 3 2 0 1 3 2
0 /1" 1 1 A 71N,_1/ 0 FT 1 1
4 5 7 ) 3 5 7 ) 5 7
i\ i\ |\ o
f‘-BC-blB«'-lc lz-KB+BC+lC t,-C+B
BC BC BC
A 00 01 1" 10 A 00 01 1 10 A 00 01 1 10
0 1 3 2 0 1 3 2 0 1 3 2
Y7 1 1] 1] 1 sl ~d
4 7 [} 4 5 7 6 4 5 7 [
1 11"4“&41 1 1 1’1 \-1/‘\-1/"\1\
,=B+C fg=A fg=1

fsis read as + , because in the 4-square formed by mO,m2,m6, and m4, the variable A and B are
changing , where as the variable C remains constant as a 0. So it is read as . In the 4-square

formed by mo, m1, m4, ms, A and C are changing but B remains constant as a 0. So it is read as
. So, the resultant expression for fz is the sum of these two, i.e., +.

fiis read as + + ,because in the 2-square formed by moand m4, A is changing from a0
to a 1. Whereas B and C remain constant as a 0. So it s read as .Inthe  2-square formed
by mo and ms, Cis changing from a0to a 1, whereas A and B remain constant as a 0. So it is
read as .In the 2-square formed by moand m2 , B is changing from a0to a lwhereas A
and Cremain constant as a (. So, it is read as , Therefore, the resultant SOP
expression is

+ +

Some possible maxterm groupings and the corresponding minimal POS
expressions read from the k-map are
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BC BC

A 00 01 11 10 A 00 o1 11 10
o 1 3 [)2 [+] 1 3 2

0 [} 4] W)
1 ovirorr® 5 )]

3

1 of——ioﬁio 1.0 | 'ﬁ_?':‘_g{,

(a) 1, = (CHB) (b) 1, = (A + B)(E + C)(A + C)

In this figure, along the 4-square formed by M1, M3, M7, M5, A and B are changing
from a 0to a 1, where as C remains constant as a 1. SO it is read as . Along the 4-
squad formed by Ms, M2, M7, and Me, variables A and C are changing from a O to a
1. But B remains constant as a 1. So it is read as . The minimal expression is the
product of these two terms , i.e., f1 = ( )( ).also in this figure, along the 2-square
formed by Mas and M6 , variable B is changing from a 0 to a 1, while variable A
remains constant as a 1 and variable C remains constant as a 0. SO, read it as

+C. Similarly, the 2-square formed by M7 andMs is read as + , while the 2-square formed by M2
and Me is read as +C. The minimal expression is the product of these sum terms, i.e, f2

=(+)+(+ )+(+C)

Ex:Reduce the expression f=3 m(0,2,3,4,5,6) using mapping and implement it in AOI logic as
well as in NAND logic.The Sop k-map and its reduction , and the implementation of the minimal
expression using AOI logic and the corresponding NAND logic are shown in figures below

In SOP k-map, the reduction is done as:

ms has only one adjacency ms4, so combine ms and mas into a square. Along this 2-
square A remains constant as 1 and B remains constant as 0 but C varies from 0 to
1.Soreaditas A.

ms has only one adjacency mz2, so combine ms and mz into a square. Along this 2-
square A remains constant as 0 and B remains constant as 1 but C varies from 1 to
0. Soread it as B.

me can form a 2-square with m2 and ms4 can form a 2-square with mo, but observe that
by wrapping the map from left to right mo, ma ,m2 ,me can form a 4-square. Out of these
M2 andmM4 have already been combined but they can be utilized again. So make it. Along
this 4-square, A is changing from 0 to 1 and B is also changing from 0 to 1 but C is
remaining constant as 0. so read it as .

4, Write all the product terms in SOP form. So the minimal SOP expression is
BC A A
A °°=._ s I I S ; '
o 1 [1 [[1] _
g“. 5 T 8 A é
_1_4 11 1 1 B
fmin= 1=C+AB+AB c ¢
k-map AOIl logic NAND logic
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Four variable k-maps:

Four variable k-map expressions can have 2%=16 possible combinations of input variables such
as , e ABCD with minterm designations mo,mz v mis respectively
in SOP form & A+B+C+D, A+B+C+  |---—-—----- + + + with maxterms Mo,Mz1, ---------

-M1s respectively in POS form. It has 2%=16 squares or cells.The binary number
designations of rows & columns are in the gray code. Here follows 01 & 10 follows
11 called Adjacency ordering.

CcD

AB 00 01 1 10
0 \ 3 2
CcD 2 fad 1250 =
ag \__ 20 o1 1 10 00 [A+B+C+DA+B+C+D|A+B+C+D|A+B+C+D
o 1 3 2
00 |ABCD |ABTD|ABCD|ABCD : 3 7 v
- ~ : i1 01 |A+B+C+DA+B+C+D|A+B+C+D|A+B+C+D
01 |ABCD|ABCD|ABCD|ABCD
2 A % “
- 1 . “I 11 |A+B+C+DA+B+C+D|A+B+C+D|A+B+C+D
11 |ABCD|ABTD|ABCD|ABCD
L] 9 n »
L} L] " "
10 |ABCD|ABCD|ABCD|ABCD| 10 |A+B+C+DA+B+C+D/A+B+C+D|A+B+C+D

SOP form POS form
EX: Reduce using mapping the expression £ m(2, 3, 6, 7, 8, 10, 11, 13, 14),

Start with the minterm with the least number of adjacencies. The minterm m,; has no
adjacency. Keep it as it is. The mg has only one adjacency, m,,. Expand mg into a 2-square
with m,,. The m; has two adjacencies, my; and m;. Hence m; can be expanded into a
4-square with mg, m; and m,. Observe that, m;, mg, m,, and m; form a geometric square.
The m,, has 2 adjacencies, m;, and m,. Observe that, m;,, m;;,, m;, and m, form a
geometric square on wrapping the K-map. So expand m,, into a 4-square with m,,, m, and
m,. Note that, m, and m,, have alrcady become a part of the 4-square m,, mg m,, and
m;. But if m;, is expanded only into a 2-square with m;;, only one variable is eliminated.
So m,; and m; are used again to make another 4-square with m,, and m, to eliminate two
variables. Now only mg and m;; are left uncovered. They can form a 2-square that
climinates only one variable. Don’t do that. See whether they can be expanded into a larger
squarc. Observe that, m,, mg, my,, and m,;; form a rectangle. So mg and m;, can be
expanded into a 4-square with m, and m,;. This eliminates two variables.
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f = ABCD + ABD + AC + BC + CD
Five variable k-map:

Five variable k-map can have 2°=32 possible combinations of input variable as

, B ABCDE with minterms mo, mi-----mz31 respectively in SOP &
A+B+C+D+E, A+B+C+ ,---------- + + + + with maxterms Mo,M1, -----------
Mai respectively in POS form. It has 2°=32 squares or cells of the k-map are divided
into 2 blocks of
16 squares each.The left block represents minterms from mo to mis in which A is a 0, and
the right block represents minterms from mais to ms1 in which A is 1.The 5-variable k-map
may contain 2-squares, 4-squares , 8-squares , 16-squares or 32-squares involving these
two blocks. Squares are also considered adjacent in these two blocks, if when
superimposing one block on top of another, the squares coincide with one another.

Some possible 2-squares in a five-variable map are my, my;; m, mg mg, my;
Mg, My My, My,

Some possible 4-squares are mg, m,, Mg, Mg Mg, My, My, My Mg, My, Mg My,
M3, Mys, My, My;; My, My, My, My.

Some possible 8-squares are my, m;, my, my, My, My, My Mg My, My M, Mg,
My Myg Mgg My Mg, My, My, Myg, My, My, My, My;.

The squares are read by dropping out the variables which change. Some possible

Grouping s is

(a) mg, m;¢ = BCDE Mg, Mg =B +C+ D+ E

(b) m,;, m;s = BCDE M;,, Mg, =B+C+ D + E

(c) my, mg M,y My, = BCE Mg, Mg, My, My, = B + C + E

(d) mg, m;, my;, mys, My, My, M, M, h_‘u- glsv M;,. My;, My,
m,e, my; = CE M, =C + E

(e) mg, mg, m,,, ml_l_' Mas, Mgas, Mg, M,, glm My, My, My, My,
mye, My, = BC M,, =B + C

DE 0 A DE 1
B‘men 10 B'~xo¢; 01 _11__10

oo | — 00 [ —
01 o1 |

" 1

|0

10 1

LJ
.
F)
i
¥l ¥
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Ex: F=Ym(0,1,4,5,6,13,14,15,22,24,25,28,29,30,31) is SOP

POS is F=mM(2,3,7,8,9,10,11,12,16,17,18,19,20,21,23,26,27)

The real minimal expression is the minimal of the SOP and POS forms.
The reduction is done as

There is no isolated 1s

Mz12 can go only with m13. Form a 2-square which is read as A‘BCD*

Mo can go with m2,mis and mis . so form a 4-square which is read as B‘C‘E*
M2o0,m21,m17 and mie form a 4-square which is read as AB‘D*
M2,m3,m18,m19,m10,m11,m26 and m27 form an 8-square which is read as C‘d
Write all the product terms in SOP form.

S

So the minimal expression is

Fmin= A‘BCD*+B‘C‘E*+AB‘D*+C*‘D(16 inputs)

DE 0 A DE 1
Be 00 01 1110 B‘N 00 01 1110
‘%A_L\-‘ —2 L,
00 |1 % 135 00 1 g =T
. s 7 s B
01 { o1 | 1 | 1
1" | “ 28 2 31 {30}
1|73 1
0 . ” "0 24 28 7| 20
10 L s 10 1]

f=ABCD + BCE + ABD + CD
In the POS k-map ,the reduction is done as:

1. There are no isolated Os

M, can go only with M. So, make a 2-square, which is read as (A + B + D + E).
5 M, can go with My, M;, and M, to form a 4-square, which is read as (A + B + C).

4.Ms

5. Ma2s

6.Mao

7. Sum terms in POS form. So the minimal expression

in POS is Fmin= A‘BcD‘+B‘C‘E‘+AB‘D‘+C‘D
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[+1] n‘
O =
orl el 6o’ o 0™ o
" o " o o
L - " O
1w |0 |0 n | O [

f=(A+B+D+E}NA+B+THBE+C+DNHA+B+DNC +D)
Six variable k-map:

Six variable k-map can have 28 =64 combinations as y e

---ABCDEF with minterms mo, mi-----me3 respectively in SOP & (A+B+C+D+E+F), ------

+ + + + + )with maxterms Mo,M1, ----------- Mez respectively in POS form. It has

2664 squares or cells of the k-map are divided into 4 blocks of 16 squares each.

EF o EF 1
co oo o1 11 10 co oo o1 11 10
/E_v;_ 3 i7 3 8]
o - .\,3._\‘
= = 5 = = = =
o1 / \
( » = = = > = = e =
s 0 = = = £
10
EF EF
CD\ 0001 11 10 CD\ o6 B3 3
S >
oo — = ~——I1"
= 5 = = = = =
o1
1 \ - -5 -7 &0 s eal a7
= N 7 4
= = 5 =
e J = = J=\ =

Some possible groupings in a six variable k-map

Don’t care combinations:For certain input combinations, the value of the output is unspecified
either because the input combinations are invalid or because the precise value of the output is
of no consequence. The combinations for which the value of experiments are not specified are
called don‘t care combinations are invalid or because the precise value of the output is of no
consequence. The combinations for which the value of expressions is not specified are called
don‘t care combinations or Optional Combinations, such expressions stand incompletely
specified. The output is a don‘t care for these invalid combinations.

Ex:In XS-3 code system, the binary states 0000, 0001, 0010,1101,1110,1111 are
unspecified. & never occur called don‘t cares.

A standard SOP expression with don‘t cares can be converted into a
standard POS form by keeping the don‘t cares as they are & writing the missing
minterms of the SOP form as the maxterms of the POS form viceversa.

Don‘t cares denoted by _X* or _¢*
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Ex:f=) m(1,5,6,12,13,14)+d(2,4)
Or f=m M(0,3,7,9,10,11,15).1rd(2,4)
SOP minimal form fmin= +B +

POS minimal form fmin=(B+D)( +B)( +D)

= ++ ++(+
cD cD B
AB\ 00 o1 1110 AB\ 00 01 11 10 DD"‘_
o] 1 F 2 q 1 3 N
o 7] i %[0 o] X[~
- s 7 B “ S 7] 5 a
o1 [[X _11 1 o1 | X o H
o 10 1]11 154 1 Ir " 12 1 om 14 B8
1 ] L] " " Y ) 1. s
10 10][l0]| © 0 D
(= j >°'
(a)f=8BC + BD + ACD {(b)f=(B+D)A+B}C +D) (c) NOR logic

Prime implicants, Essential Prime implicants, Redundant prime implicants:

Each square or rectangle made up of the bunch of adjacent minterms is called a subcube. Each
of these subcubes is called a Prime implicant (Pl). The Pl which contains at leastone which
cannot be covered by any other prime implicants is called as Essential Prime implicant
(EPI).The Pl whose each 1 is covered at least by one EPI is called a Redundant Prime implicant
(RPI). A Pl which is neither an EPI nor a RPI is called a Selective Prime implicant (SPI).

The function has unique MSP comprising EPI is
F(A,B,C,D)=CD+ABC+AD+B

The RPI _BD‘ may be included without changing the function but the resulting
expression would not be in minimal SOP(MSP) form.

CcD
AB 00 01 11 10 __EPI
0 = 2 2] ACD
epP1._ 00 1
ABC\‘ 4 5 7 6
o1| 3 11 | 4] RPI
12 13 1 14 BD
11 1 ] 1l+t—EPI
8 e " 10 ABC
ACD 10 &l

Essential and Redundant Prime Implicants
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F(A,B,C,D)=>m(0,4,5,10,11,13,15) SPI are marked by dotted
squares, shows MSP form of a function need not be unique.

CD
EPI A\B 00 01 11 10
0 1 3 2
ACD 00 -.1'1—'
SPI
ABC\ 4L __ .5 7 6
o1 N1 Tf:!
SPI o=+ sPI
12| L3l 15 14
BCD 1 E_L' -rqu 2_ ABD
8 ‘9‘ _:-F 0 o
i1 1 ACD
10 L T le—epi
ABC

Essential and Selective Prime Implicants

Here, the MSP form is obtained by including two EPI‘s & selecting a set of SPI‘s
to cover remaining uncovered minterms 5,13,15. & these can be covered as

(A) (4,5) &(13,15) ---------- B +ABD
(B) (5,13) & (13,15) -------- B D+ABD
(C) (5,13) & (15,11) ------- B D+ACD
F(A,B,C,D)= +A C--------- EPI‘'s + B +ABD
(OR) F(A,B,C,D)= S Y O E— EPI‘s + B D+ABD
(OR) F(A,B,C,D)= N o— EPI‘s + B D+ACD

False PI’s Essential False PI’'s, Redundant False PI's & Selective False PI’s:

The maxterms are called falseminterms. The Pl‘s is obtained by using the
maxterms are called False Pl‘s (FPI). The FPI which contains at least one _0‘ which
can‘t be covered by only other FPI is called an Essential False Prime implicant (ESPI)

F(A,B,C,D)= ym(0,1,2,3,4,8,12)
=1 M(5,6,7,9,10,11,13,14,15)
Fmin=(+)(+)(+)(+)

All the FPI, EFPI‘s as each of them contain atleast one =0‘ which can‘t be covered
by any other FPI
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A_BCD [ele] 01 11 10
o L] 3 2
oo
o1 - 5 i -]
EFPI ° DI ° EFPI
B+ 12 i3 16, T4 B+
11 [+] (]
£l o Mo *| lo]"] ofj—grm
Essential False Prime implicants
Consider Function F(A,B,C,D)= m M(0,1,2,6,8,10,11,12)
CD
ABN_Joo] o1 11 |10}e——RFP
0 1 a 2 B+D
EFPI ]
A+B+C oo11o 0] ‘E
4 5 7 ]
01 |2 EFPI
A+C+D
12 13 15 14
11| [0
_ EFPI —l
A+C+D 8 9 1| __10
10( llo [ 1o — EFPI _
1 A+B+C

Essential and Redundant False Prime Implicants

Mapping when the function is not expressed in minterms (maxterms):

An expression in k-map must be available as a sum (product) of minterms (maxterms).
However if not so expressed, it is not necessary to expand the expression algebraically
into its minterms (maxterms). Instead, expansion into minterms (maxterms) can be
accomplished in the process of entering the terms of the expression on the k-map.

Limitations of Karnaugh maps:

Convenient as long as the number of variables does not exceed six.
Manual technique, simplification process is heavily dependent on the human abilities.

Quine-Mccluskey Method:

It also known as Tabular method. It is more systematic method of minimizing
expressions of even larger number of variables. It is suitable for hand computation
as well as computation by machines i.e., programmable. . The procedure is based
on repeated application of the combining theorem.

PA+P =P (P is set of literals) on all adjacent pairs of terms, yields the set of all Pl‘s
from which a minimal sum may be selected.

Consider expression

ym(0,1,4,5)= + C+A +A C
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First, second terms & third, fourth terms can be combined
(+)+(C+)=+A

Reduced to

(+)=

The same result can be obtained by combining mo& m4 & mi&ms in first step &
resulting terms in the second step .

Procedure:

Decimal Representation Don‘t

cares

Pl chart EPI

Dominating Rows & Columns

Determination of Minimal expressions in comples cases.

Branching Method:

EXAMPLE 3.29 Obtain the set of prime implicants for the Boolean expression

f=Xm(0,1,6,7,8,9, 13, 14, 15) using the tabular method.
Solution
Group the minterms in terms of the number of 1s present in them and write their binary
designations. The procedure to obtain the prime implicants is shown in Table 3.3.

Table 3.3 Example 3.29

Column 1 Column 2 Column 3
Minterm Binary designation ABCD ABCD
Index 0 0 0000V 0,1¢(1) 000- v 0,1,89(1,8)-00-Q
Index 1 | 0001V 0.8(8) ~-000V
8 1000V 1,98 -001 v
Index 2 6 0110V 8.9() 100~ 6,7,14,15(1,8)~-11-P
9 1001V 6,7(1) 011~V
Index 3 7 0111V 6,148 =110V
13 1101V 9,134 1-01S
14 1110/ 7,158 ~-111V
Index 4 15 1111V 13,15¢2) 11 -1R
4,15(h 111 -V
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Comparing the terms of group 1 with the terms of group 2 in column 2, the terms 0, 1 (1), i.e.
000-and 8, 9 (1), i.e. 100- are combined to form 0, 1, 8, 9 (1, 8), i.e. <00-. Record it in group 1 of
column 3 and check off 0, 1 (1), i.e. 000—, and 8, 9 (1), i.e. 100- of column 2. The terms 0, 8 (8),
i.e. =000 and 1, 9 (8), i.e. =001 are combined to form 0, 1, 8, 9 (1, 8), i.e. =00~ This has already
been recorded in column 3. So, no need to record again. Check off 0, 8 (8), i.e. =000 and 1, 9 (8),
i.e. =001 of column 2. Draw a line below 0, 1, 8, 9 (1, 8), i.e. =00 This is the only term in group 1
of column 3. No term of group 2 of column 2 can be combined with any term of group 3 of
column 2. So, no entries are made in group 2 of column 2.

Comparing the terms of group 3 of column 2 with the terms of greup 4 of column 2, the
terms 6, 7 (1), i.e. 011—, and 14, 15 (1), i.e. 111- are combined to form 6, 7, 14, 15 (1, 8), i.e.
=11-. Record it in group 3 of column 3 and check off 6, 7 (1), i.e. 011—and 14, 15 (1), i.e. 111-of
column 2, The terms &, 14 (R), i.e. =110 and 7, 15 (8), i.e. =111 are combined to form 6, 7, 14, 15
(1, B), i.e. =11-. This has already been recorded in column 3; so, check off 6, 14 (8), i.e. <110 and
7,15 (8), i.e. =111 of column 2.

Observe that the terms 9, 13 (4}, i.e. 1-01 and 13, 15 (2}, i.e. 1 1-1 cannot be combined with
any other terms. Similarly in column 3, the terms 0, 1, 8,9 (1, 8), i.e. 00-and 6, 7, 14, 15(1, 8),
i.e. =1 1—cannot also be combined with any other terms. So, these 4 terms are the prime implicants.

The terms, which cannot be combined further, are labelled as P, @, R, and 5. These form the
set of prime implicants.

EX:

Obtain the minimal expression for f = £ m(1, 2, 3, 5,6, 7, 8, 9, 12,
13, 15) using the tabular method.

Solution
The procedure to obtain the set of prime implicants is illustrated in Table 3.4.

Table 3.4 Example 3.30

Step 1 Step 2 Step 3
Index 1 17 1,.3(2)v 1,3,5,7(2,4) T
27/ 1,.5@) v/ 1,5,9,13 (4, 8) S
8 v 1,9(8) v 2,3,6,7(1,4) R
Index 2 3/ 2,.3(Hv 8,9,12,13(1.4) Q
5/ 2,64V 5,7,13,15(2,8) P
6V 8, 9() vV
9V 8,124 Vv
127 3,774 v
Index 3 TV 5.7
13/ 5,13(8)v
Index 4 15V 6,7(1)v
9. 134 v
12, 13 () v/
7,15 8) v
13,15 v/
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Tow nail-combinablc terms P. Q. R. Sand T arc accorded as prime implicants.
P—+5.7.13,IS(2.8)- X | X1=BD

(Liberals with weijzhcs 2 anJ 8, i.e. C auct A are deleted. The lowesE minterm is mg(3 =4 +1). 50, Jitem1s

wijh weights 4 ance | , i.e. B and D aze present in non-compl<menled form. So, zead it as BD.)

p+s,s, iz, nn,4)=i x n* =AC

{Liberals with weights 1 aztd 4, i.e. D and B arc rir\etrd. The lowest mintcrm ts mg. So, literal with weight
8 is present in non-complemented form and literal wit:ft woighl 2 is present in couipJcmcnicd

form. Sn, reed it as AC,]

R—+2.2,d.7(,4=0XJX=AC
(Litertits with w'eights | and 4, i.e. D and B are rlel«irrt- The Inwest miniemi is mg, So, literal with
weighl 2 is present in non-complemented form and literal with weight 8 is present in complcnicnted

form. So, rrad it as AC.I

S—+1,:2,9, 13(4,B) XX0I1=CD

(Li\era\s wil\h weights 4 end 6. i.e. B and A are deleted. The lowest mintcrm is m,. SD. [ItCF8I with
wcigh\ 1is pream in non-complemented form and literal witb weight 2 is present in complemented
form. So, read it cs CD.)

T—+1.3,3.7{2.4}=0XX J =AD

fLitcrals with weigfit,s 2 and 4. i.e. C and B arc deieted. The lowest Minicrniis | . Sri. literal with weight 1 is
present in non-complemented form und literal with weight 8 is present in complemented

form. So. read ii as AD. |
Thc primc implicant chart of- the expression

F—zm(l.2,3,5.6,7,8,V.12,J3.1")

is cx shown in Table 3.5. It cnnsisti of 11 columns corresponding tn the number of minterms rind J

rows corresponding iu the prime implicants P, Q. R. S, and T teneraied. Row R contains four xs nt

the intersections with col umns 2, 3, 6, and 7. becau se these minicrms as covered b3e the prime

implicant ft. A ruw ix said to cover the columns in whic h it hits xu. The problem now is to xclect a minimo)

subset of prime implicants, such thni each cnlumn contains at Icast one x in the rows corresponding io

the sr Ir twfl suti.set and the tntnl numher of titerols in the prince iniplicants selected

is a.s .small a.s prissible. Tnem equirements guaronicc ihat the nuriibc r nf unions of the selected

prime impl icanks is et}ual in the nriginal number nf ni inicrrris and thai, nn uther exprc+sinn
cnnluiriiog tier liberals can be You nd.

Talile 3J Eerie iplc .3.3tl. Prime implicani chin
1 2 3 fi 6 7 S 9 I* 13 15
"P—1.7.J3.1312.6> X X n X
“Q—+8.9.12.TI(1.4) x x x X
'‘R-+2.T6.7N .4
S 1,5.9,1? f4. F» x X x
T+1.3.5.712,41 x X x
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In the prime implicant chart of Table 3.5, m, and m are covered by R only. So, R is an essential
prime implicant. So, check off all the minterms covered by it, i.e. m,, m;, m,, and m,. Q is also an
essential prime implicant because only Q covers m, and m,,. Check off all the minterms covered
by it, i.e. mg, mgy, m,, and m, 3 P is also an essential prime implicant, because m 4 is covered only
by P. So check off m s, mg, m,, and m,; covered by it. Thus, only minterm 1 is not covered. Either
row 5 or row T can cover it and both have the same number of literals. Thus, two minimal expressions
are possible.

P+Q+R+S=BD+AC+AC+CD
or P+Q+R+T=BD+AC+AC+AD
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MODULE-III:

Combinational Logic Circuits

Combinational Logic Design

Logic circuits for digital systems may be combinational or sequential. The output of a
combinational circuit depends on its present inputs only .Combinational circuit processing
operation fully specified logically by a set of Boolean functions .A combinational circuit consists of
input variables, logic gates and output variables.Both input and output data are represented by
signals, i.e., they exists in two possible values. One is logic —1 and the other logic O.

Combinational Circuits

] >
Combinati 1
: “ombinationa
ninputs — > R [—> m outputs
: circuit
—_— —>
Fig. Block Diagram of Combinational Circuit

For n input variables,there are 2" possible combinations of binary input variables
.For each possible input Combination ,there is one and only one possible output
combination.A combinational circuit can be described by m Boolean functions one for
each output variables.Usually the input s comes from flip-flops and outputs goto flip-flops.

Design Procedure:

1.The problem is stated

2. The number of available input variables and required output variables is

determined. 3.The input and output variables are assigned letter symbols.

4.The truth table that defines the required relationship between inputs and outputs is derived.
5.The simplified Boolean function for each output is obtained.

6.The logic diagram is drawn.

| MREC(A)



DIGITAL ELECTRONICS

Adders:

Digital computers perform variety of information processing tasks,the one is
arithmetic operations.And the most basic arithmetic operation is the addition of
two binary digits.i.e, 4 basic possible operations are:

0+0=0,0+1-1,1+0=1,1+1=10

The first three operations produce a sum whose length is one digit, but when augends and
addend bits are equal to 1,the binary sum consists of two digits.The higher significant bit
of this result is called a carry.A combinational circuit that performs the addition of two bits
is called a half-adder. One that performs the addition of 3 bits (two significant bits &
previous carry) is called a full adder.& 2 half adder can employ as a full-adder.

The Half Adder: A Half Adder is a combinational circuit with two binary inputs
(augends and addend bits and two binary outputs (sum and carry bits.) It adds the
two inputs (A and B) and produces the sum (S) and the carry (C) bits. It is an
arithmetic operation of addition of two single bit words.

F]
]
1
©
0
g
il
g
@

-« 00|»
“0=0|m
O==0|0
= 000|0

A s

(a) Truth table (b) Block diagram

The Sum(S) bit and the carry (C) bit, according to the rules of binary addition, the
sum (S) is the X-OR of A and B (It represents the LSB of the sum). Therefore,

S=A + B= A®B
The carry (C) is the AND of A and B (it is O unless both the inputs are 1).Therefore,
C=AB

A half-adder can be realized by using one X-OR gate and one AND gate a

A—{>0—
) O e )
| D ) ;

Logic diagrams of half-adder
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NAND LOGIC:

S=AB+ AB=AB+ AA + AB + BB
=A(A + B) + B(A + B)
=A-AB+B- AB

0

1 - AB
Logic diagram of a half-adder using only 2-input NAND gates.

NOR Logic:

S=AB+AB=AB+AA + AB + BB
=A(A+B)+B(A + B)

= (A + B)A + B)
=A+B+A+B
C=AB=AB=A + B
A

8 A+B
A— s
B_

Logic diagram of a half-adder using only 2-input NOR gates.

v

The Full Adder:

A Full-adder is a combinational circuit that adds two bits and a carry and
outputs a sum bit and a carry bit. To add two binary numbers, each having two or more
bits, the LSBs can be added by using a half-adder. The carry resulted from the addition
of the LSBs is carried over to the next significant column and added to the two bits in
that column. So, in the second and higher columns, the two data bits of that column
and the carry bit generated from the addition in the previous column need to be added.

The full-adder adds the bits A and B and the carry from the previous column called the carry-
in Cin and outputs the sum bit S and the carry bit called the carry-out Cout . The variable S gives the
value of the least significant bit of the sum. The variable Cout gives the output carry.The
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eight rows under the input variables designate all possible combinations of 1s and Os
that these variables may have. The 1s and Os for the output variables are determined
from the arithmetic sum of the input bits. When all the bits are Os , the output is 0. The
S output is equal to 1 when only 1 inputis equal to 1 or when all the inputs are equal to
1. The Cout has a carry of 1 if two or three inputs are equal to 1.

Inputs Sum Carry
A B C,. S C_x
o o o ] o
o o 1 1 o
o 1 o 1 0o
o 1 1 (o] 1
1 o o 1 o
1 o 1 0 1 A — —>S
1 1 o o 1 B — Full-adder
1 1 1 1 1 Cun —C.us
{(a) Truth table (b) Block diagram

Full-adder.

From the truth table, a circuit that will produce the correct sum and carry bits in
response to every possible combination of A,B and Cin is described by

SABCn ABCin ABCin ABCGCi
Cout ABCin ABCin ABCE ABCin o

and
S A B GCi
Cout ACin BCin AB

The sum term of the full-adder is the X-OR of A,B, and Cin, i.e, the sum bit the
modulo sum of the data bits in that column and the carry from the previous
column. The logic diagram of the full-adder using two X-OR gates and two AND
gates (i.e, Two half adders) and one OR gate is

1 .'
A= )
] "Ds":}D
H i (A e B)C,
C.,E : E 34'__DCL.(AQB)C,,¢AB
s
L]
1]
.

Logic diagram of a full-adder using two half-adders.

sS=A@Be&C,

I B

The block diagram of a full-adder using two half-adders is -

A AB Co:= (A ® B)C,, + AB
B8 HA ASB
HA S=A®B®C,
Ca I
Block diagram of a full-adder using two half-adders.
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Even though a full-adder can be constructed using two half-adders, the disadvantage
is that the bits must propagate through several gates in accession, which makes the
total propagation delay greater than that of the full-adder circuit using AOI logic.

The Full-adder neither can also be realized using universal logic, i.e., either only
NAND gates or only NOR gates as

A®B=A-AB-B-AB

Then
S=A®B®C, = (A®B)-(A®B)C, -C,, -(A®B)C,
NAND Logic:
C,u=C,(A®B)+AB= C,_(A®B)-AB
xLﬂ
B
C.r'——/ A—
A B— )
B |
A c—I J —
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A= Ci—
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Sum and carry bits of a full-adder using AOI logic.

L, —
Cy in (: 5)} ..

Logic diagram of a full-adder using only 2-input NAND gates.
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NOR Logic:
A®B=(A+B)+A+B
Then
S=A®B®C, = (A®B)+C,, +(A@B)+Ci
C.u=AB+C,(A®B)=A+B+Ci, +A®B
cou‘
ASB
A—I s
3_4:[>J
Ci
Logic diagram of a full-adder using only 2-input NOR gates.
Subtractors:

The subtraction of two binary numbers may be accomplished by taking the
complement of the subtrahend and adding it to the minuend. By this, the subtraction
operation becomes an addition operation and instead of having a separate circuit for
subtraction, the adder itself can be used to perform subtraction. This results in reduction
of hardware. In subtraction, each subtrahend bit of the number is subtracted from its
corresponding significant minuend bit to form a difference bit. If the minuend bit is smaller
than the subtrahend bit, a 1 is borrowed from the next significant position., that has been
borrowed must be conveyed to the next higher pair of bits by means of a signal coming out
(output) of a given stage and going into (input) the next higher stage.

The Half-Subtractor:

A Half-subtractor is a combinational circuit that subtracts one bit from
the other and produces the difference. It also has an output to specify if a 1 has
been borrowed. . It is used to subtract the LSB of the subtrahend from the LSB of
the minuend when one binary number is subtracted from the other.

A Half-subtractor is a combinational circuit with two inputs A and B and two
outputs d and b. d indicates the difference and b is the output signal generated that
informs the next stage that a 1 has been borrowed. When a bit B is subtracted from
another bit A, a difference bit (d) and a borrow bit (b) result according to the rules given as

Inputs Outputs
A B d b
o o o o
1 o 1 o A—ae —ad
1 1 o o Half-subtractor
o 1 1 1 B5-— —a b
(a) Truth table (b) Block diagram

Half-subtractor.
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The output borrow b is a 0 as long as A2B. It is a 1 for A=0 and B=1. The d output is
the result of the arithmetic operation 2b+A-B.

A circuit that produces the correct difference and borrow bits in response to every
possible combination of the two 1-bit numbers is , therefore

d=A + B=A®Band b=B

That is, the difference bit is obtained by X-OR ing the two inputs, and the borrow bit is
obtained by ANDing the complement of the minuend with the subtrahend.Note that
logic for this exactly the same as the logic for output S in the half-adder.

: D—d A—>—\ "
s—__/

}b e—[>:

Logic diagrams of a half-subtractor.

A half-substractor can also be realized using universal logic either using only
NAND gates or using NOR gates as:

NAND Logic:
d=A®PB=A-AB-B-AB
b= AB =B(A + B)=B(AB)= B- AB
A—
d
B_
b
B-AB
Logic diagram of a half-subtractor using only 2-input NAND gates.
NOR Logic:

d=A®B=AB+AB=AB+BB+AB +AA
=B(A+B)+A(A+B)=B+A+B+A+A+B

d=AB=A(A+B)= A(A+B)=A+(A+B)
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A+A+
> b

3 d
. ) ) >—
_D:7 B+A+B

Logic diagram of a half-subtractor using only 2-input NOR gates.

The Full-Subtractor:

The half-subtractor can be only for LSB subtraction. IF there is a borrow during
the subtraction of the LSBs, it affects the subtraction in the next higher column; the subtrahend bit
is subtracted from the minuend bit, considering the borrow from that column used for the
subtraction in the preceding column. Such a subtraction is performed by a full-subtractor. It
subtracts one bit (B) from another bit (A) , when already there is a borrow bi from this column for the
subtraction in the preceding column, and outputs the difference bit (d) and the borrow bit(b)
required from the next d and b. The two outputs present the difference and output borrow. The 1s
and Os for the output variables are determined from the subtraction of A-B-bi.

Inputs Difference Borrow

A B b d b

0O 0 O 0 0

o o 1 1 1

o 1 0 1 1

0" 3 13 0 1

1 0 O 1 [+]

1 0 1 o 0 e | 4
1 1 0 0 o B—— Full-subtractor

-3 3 1 1 b,————» ———b

(a) Truth table (b) Block diagram

Full-subtractor.

From the truth table, a circuit that will produce the correct difference and borrow
bits in response to every possiblecombinations of A,B and bi is

d= ABb, + ABb, + ABb, + ABb,
=b,(AB + AB) +b(AB + AB)
=b(A®B)+ b(A®B)=A®B®b,
and
b= ABb, + ABb, + ABb, + ABb, = AB(b, + b,) + (AB + AB)b,
= AB + (A® B)b,

A full-subtractor can be realized using X-OR gates and AOI gates as
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Z—%D Samam
L [0
{>°— b

Logic diagram of a full-subtractor.

The full subtractor can also be realized using universal logic either using only
NAND gates or using NOR gates as:

NAND Logic:

d=A@SB@&b,= (ADB)®b; =(A D BXA @ B)b, -b;(A & B)b;
b=AB +b(A®B)= AB+b,;(A@B)

= AB-b,(A® B)=B(A + B)-b,(b, + (A ® B)]

= B-AB-b,[b, - (A @ B)]

: Bat Do g

—~

Logic diagram of a full-subtractor using only 2-input NAND gates.

b

NOR Logic:

d=A®B®b,=(AD®B)@b,

= (A®B)b;, + (A ® B)b,

= [(A ® B)+(A ®B)b;][b; + (A ® B)b;]

= (A®B)+(A®B)+b, +b, +(A®B) +b,

=(A®B)+(A®B)+b, +b, + (A®B) +b,
b=AB+b(A®B)
=A(A+B)+(A®B)[(A®B)+b,]

=A+(A+B)+(A®B)+(A®B)+b,
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SpRips

Logic diagram of a full subtractor using only 2-input NOR gates.

Binary Parallel Adder:

A binary parallel adder is a digital circuit that adds two binary numbers in
parallel form and produces the arithmetic sum of those numbers in parallel form. It
consists of full adders connected in a chain , with the output carry from each full-
adder connected to the input carry of the next full-adder in the chain.

The interconnection of four full-adder (FA) circuits to provide a 4-bit parallel adder. The
augends bits of A and addend bits of B are designated by subscript numbers from right to left, with
subscript 1 denoting the lower —order bit. The carries are connected in a chain through the full-
adders. The input carry to the adder is Cin and the output carry is C4. The S output generates the
required sum bits. When the 4-bit full-adder circuit is enclosed within an IC package, it has four
terminals for the augends bits, four terminals for the addend bits, four terminals for the sum bits,
and two terminals for the input and output carries. AN n-bit parallel adder requires n-full adders. It
can be constructed from 4-bit, 2-bit and 1-bit full adder ICs by cascading several packages. The
output carry from one package must be connected to the input carry of the one with the next higher
—order bits. The 4-bit full adder is a typical example of an MSI function.

B, : B, A,
R !
FA, FA, FA, FA, Ca
[ ‘ ! ! !
C, Ss S, S; S,
Logic diagram of a 4-bit binary parallel adder.

Ripple carry adder:

In the parallel adder, the carry —out of each stage is connected to the carry-in of the
next stage. The sum and carry-out bits of any stage cannot be produced, until sometime after the

carry-in of that stage occurs. This is due to the propagation delays in the logic circuitry,
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which lead to a time delay in the addition process. The carry propagation delay for each full-
adder is the time between the application of the carry-in and the occurrence of the carry-out.

The 4-bit parallel adder, the sum (S1) and carry-out (C1) bits given by FA1 are not valid,
until after the propagation delay of FAi. Similarly, the sum Sz and carry-out (C2) bits
given by FA:2 are not valid until after the cumulative propagation delay of two full
adders (FA1 and FA2) , and so on. At each stage ,the sum bit is not valid until after the
carry bits in all the preceding stages are valid. Carry bits must propagate or ripple
through all stages before the most significant sum bit is valid. Thus, the total sum (the
parallel output) is not valid until after the cumulative delay of all the adders.

The parallel adder in which the carry-out of each full-adder is the carry-in to the next
most significant adder is called a ripple carry adder.. The greater the number of bits
that aripple carry adder must add, the greater the time required for it to perform a valid
addition. If two numbers are added such that no carries occur between stages, then
the add time is simply the propagation time through a single full-adder.

4- Bit Parallel Subtractor:

The subtraction of binary numbers can be carried out most conveniently by means of
complements , the subtraction A-B can be done by taking the 2‘s complement of B and adding it to A

. The 2‘s complement can be obtained by taking the 1‘'s complement and adding 1 to the least

significant pair of bits. The 1‘s complement can be implemented with inverters as

B, A, B, A, B, A, B, A
c Cus ©C Cis '@ S o Cpy=1
out 4 FA, |e 4 “outs FA, Va3 Vou2 FA, on2 out 1 FA, n 1
S, S, S, S,

Logic diagram of a 4-bit parallel subtractor.

Binary-Adder Subtractor:

A 4-bit adder-subtractor, the addition and subtraction operations are combined into
one circuit with one common binary adder. This is done by including an X-OR gate with each
full-adder. The mode input M controls the operation. When M=0, the circuit is an adder, and
when M=1, the circuit becomes a subtractor. Each X-OR gate receives input M and one of the

inputs of B. When M=0, E® =B .The full-adder receives the value of B , the input carry is 0
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and the circuit performs A+B. when Bel=B' and Ci=1l. The B inputs are
complemented and a 1 is through the input carry. The circuit performs the
operation A plus the 2‘'s complement of B.

B‘ AA BJ AQ B? A? B 1 A1

17 FA, FA, FA, FA,
C. S, Sy S; S,
Logic diagram of a 4-bit binary adder-subtractor.

The Look-Ahead —Carry Adder:

In parallel-adder,the speed with which an addition can be performed is
governed by the time required for the carries to propagate or ripple through all of
the stages of the adder. The look-ahead carry adder speeds up the process by
eliminating this ripple carry delay. It examines all the input bits simultaneously and
also generates the carry-in bits for all the stages simultaneously.

The method of speeding up the addition process is based on the two additional
functions of the full-adder, called the carry generate and carry propagate functions.

Consider one full adder stage; say the nth stage of a parallel adder as
shown in fig. we know that is made by two half adders and that the half adder contains
an X-OR gate to produce the sum and an AND gate to produce the carry. If both the bits
An and Bn are 1s, a carry has to be generated in this stage regardless of whether the
input carry Cin is a 0 or a 1. This is called generated carry, expressed as Gn= An.Bn
which has to appear at the output through the OR gate as shown in fig.

AB,=G,

A, Co1=Cpr=(A,@B)C,+AB,
B HA A ®B,=P, Cy=P,- C,
" HA S,=A,®8,8C,

Cn

A full adder (nth stage of a parallel adder).

Thereis another possibility of producing a carry out. X-OR gate inside the half-adder

at the input produces an intermediary sum bit- call it Pn —which is expressed as
Next Pn and Cn are added using the X-OR gate inside the second half adder to produce the final
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§5,=P,&C whereP =A ©B,

sum bit and and output carryCo= Pn.Cn:(Ane B, )Cn Which

becomes carry for the (n+1) th stage.

Consider the case of both Pn and Cn being 1. The input carry Cn has to be
propagated to the output only if Pnis 1. If Pnis O, even if Cn is 1, the and gate in the
second half-adder will inhibit Cn . the carry out of the nth stage is 1 when either
Gn=1 or Pn.Cn =1 or both Gn and Pn.Cn are equal to 1.

For the final sum and carry outputs of the nth stage, we get the following Boolean

expressions.

S,=P ©C whereP =A &B,
C,.=C, =G, +PC whereG, =A -B,

n+l n>n

Observe the recursive nature of the expression for the output
carry at the nth stage which becomes the input carry for the (n+1)st stage .it is possible to
express the output carry of a higher significant stage is the carry-out of the previous stage.

Based on these , the expression for the carry-outs of various full adders are as follows,

C,=G,+P,-C,

C,=G,+P,-C,=G,+P,-G,+P,-P,-C,
C,=G,+P,-C,=G,+P,- G, +P,-P, -G, +P,-P,-P,-C,
C,=G;+P,-C;=G;+P,-G,+P,-P,-G+P,-P,-P, -G, +P,-P,-P, - P,- C,
The general expression for n stages designated as 0 through (n — 1) would be
C,=G, +P, ,-C =G, _,+P -G, ,+P, P G, 3+..+P ... Py-Cy

n-1 n-2 ”

Observe that the final output carry is expressed as a
function of the input variables in SOP form. Which is two level AND-OR or equivalent
NAND-NAND form. Observe that the full look-ahead scheme requires the use of OR
gate with (n+1) inputs and AND gates with number of inputs varying from 2 to (n+1).
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Logic diagram of a 4-bit look-ahead-carry adder.
2’s complement Addition and Subtraction using Parallel Adders:

Most modern computers use the 2‘s complement system to represent negative numbers
and to perform subtraction operations of signed numbers can be performed using only the
addition operation ,if we use the 2‘s complement form to represent negative numbers.

The circuit shown can perform both addition and subtraction in the 2‘s
complement. This adder/subtractor circuit is controlled by the control signal
ADD/SUB*. When the ADD/SUB‘ level is HIGH, the circuit performs the addition of the
numbers stored in registers A and B. When the ADD/Sub‘ level is LOW, the circuit
subtract the number in register B from the number in register A. The operation is:

When ADD/SUB‘is a 1:

1. AND gates 1,3,5 and 7 are enabled , allowing Bo,B1,B2and B3 to pass to the
OR gates 9,10,11,12 . AND gates 2,4,6 and 8 are disabled , blocking
Bo‘,B1°,B2*, and B3 from reaching the OR gates 9,10,11 and 12.

2. The two levels Boto Bz pass through the OR gates to the 4-bit parallel adder,
to be added to the bits Ao to As. The sum appears at the output Soto Ss

3. Add/SUB‘ =1 causes no carry into the adder.

When ADD/SUBf is a 0:

1. AND gates 1,3,5 and 7 are disabled , allowing Bo,B1,B2and B3z from reaching
the OR gates 9,10,11,12 . AND gates 2,4,6 and 8 are enabled , blocking
Bo‘,B1¢,B2, and Bsz‘ from reaching the OR gates.
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2. The two levels Bo‘ to B3 pass through the OR gates to the 4-bit parallel
adder, to be added to the bits Ao to AaThe Co is now 1.thus the number in
register B is converted to its 2‘s complement form.

3. The difference appears at the output So to Sa.

Adders/Subtractors used for adding and subtracting signed binary numbers. In
computers , the output is transferred into the register A (accumulator) so that the
result of the addition or subtraction always end up stored in the register A This is
accomplished by applying a transfer pulse to the CLK inputs of register A.

Register B

T2 STV
. ——-I 4-bit paraniel ndder <
1 1 1 f
l o cA:K I & c‘\.’x [ o c’:.lK ] c‘:;( ] Ss[ S S4|Se
P s I 11 1] f

t_ogic diagram of a paraliel using 2's P it system.

Serial Adder:

A serial adder is used to add binary numbers in serial form. The two binary numbers to
be added serially are stored in two shift registers A and B. Bits are added one pair at a time
through a single full adder (FA) circuit as shown. The carry out of the full-adder is transferred to
a D flip-flop. The output of this flip-flop is then used as the carry input for the next pair of
significant bits. The sum bit from the S output of the full-adder could be transferred to a third
shift register. By shifting the sum into A while the bits of A are shifted out, it is possible to use
one register for storing both augend and the sum bits. The serial input register B can be used to
transfer a new binary number while the addend bits are shifted out during the addition.

The operation of the serial adder is:

Initially register A holds the augend, register B holds the addend and the carry flip-flop
is cleared to 0. The outputs (SO) of A and B provide a pair of significant bits for the full-adder at
x and y. The shift control enables both registers and carry flip-flop , so, at the clock pulse both
registers are shifted once to the right, the sum bit from S enters the left most flip-flop of A , and
the output carry is transferred into flip-flop Q . The shift control enables the registers for a
number of clock pulses equal to the number of bits of the registers. For each succeeding clock
pulse a new sum bit is transferred to A, a new carry is transferred to Q, and both registers are
shifted once to the right. This process continues until the shift control is disabled. Thus the
addition is accomplished by passing each pair of bits together with the previous carry through
a single full adder circuit and transferring the sum, one bit at a time, into register A.
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Initially, register A and the carry flip-flop are cleared to 0 and then the first number
is added from B. While B is shifted through the full adder, a second number is transferred
to it through its serial input. The second number is then added to the content of register A
while a third number is transferred serially into register B. This can be repeated to form the
addition of two, three, or more numbers and accumulate their sum in register A.

Shift
control

CLK

Serial
input

Lst,

S

SO
Shift register A
l——. x sS—
FA b
SO
Shift register B
Q D
C
N\ Clear —J

L%

Logic diagram of a serial adder.

Difference between Serial and Parallel Adders:

The parallel adder registers with parallel load, whereas the serial adder uses shift
registers. The number of full adder circuits in the parallel adder is equal to the number of
bits in the binary numbers, whereas the serial adder requires only one full adder circuit
and a carry flip-flop. Excluding the registers, the parallel adder is a combinational circuit,
whereas the serial adder is a sequential circuit. The sequential circuit in the serial adder
consists of a full-adder and a flip-flop that stores the output carry.

BCD Adder:

The BCD addition process:

1. Add the 4-bit BCD code groups for each decimal digit position using

ordinary binary addition.

2. For those positions where the sum is 9 or less, the sum is in proper BCD
form and no correction is needed.

3. When the sum of two digits is greater than 9, a correction of 0110 should
be added to that sum, to produce the proper BCD result. This will
produce a carry to be added to the next decimal position.

A BCD adder circuit must be able to operate in accordance with the above steps.
In other words, the circuit must be able to do the following:

1. Add two 4-bit BCD code groups, using straight binaryaddition.
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2. Determine, if the sum of this addition is greater than 1101 (decimal 9); if it is , add
0110 (decimal 6) to this sum and generate a carry to the next decimalposition.

The first requirement is easily met by using a 4- bit binary parallel adder such
as the 74LS83 IC .For example , if the two BCD code groups AsA2A1Aocand B3B2B1Bo
are applied to a 4-bit parallel adder, the adder will output S4S3S2S1So , where Sa is
actually Ca4, the carry —out of the MSB bits.

The sum outputs SaSsS2S1So can range anywhere from 00000 to 100109when
both the BCD code groups are 1001=9). The circuitry for a BCD adder must include the
logic needed to detect whenever the sum is greater than 01001, so that the correction
can be added in. Those cases , where the sum is greater than 1001 are listed as:

S, S, S, S, S, Decimal number
0 | 0 1 0 10
0 l 0 1 | 11
0 | | 0 0 12
0 | | 0 | 13
0 | | | 0 14
0 | | | | 15
| 0 0 0 0 16
| 0 0 0 | 17
| 0 0 | 0 18

Let us define a logic output X that will go HIGH only when the sum is greater
than 01001 (i.e, for the cases in table). If examine these cases ,see that X will be
HIGH for either of the following conditions:

1. Whenever Sa4 =1(sum greater than 15)

2. Whenever Sz =1 and either Sz or S1 or both are 1 (sum

10 to 15) This condition can be expressed as
X=S4+S3(S2+S1)

Whenever X=1, it is necessary to add the correction factor 0110 to the sum bits, and to
generate a carry. The circuit consists of three basic parts. The two BCD code groups AsA2A1A0
and BsB2B1Bo are added together in the upper 4-bit adder, to produce the sum S4S3S2S1So. The
logic gates shown implement the expression for X. The lower 4-bit adder will add the correction
0110 to the sum bits, only when X=1, producing the final BCD sum output represented by
>3>2>1>0 The X is also the carry-out that is produced when the sum is greater than 01001.
When X=0, there is no carry and no addition of 0110. In such cases, } 3> 2> 1> 0= S3S2S1So0.
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Two or more BCD adders can be connected in cascade when two or more
digit decimal numbers are to be added. The carry-out of the first BCD adder is
connected as the carry-in of the second BCD adder, the carry-out of the second
BCD adder is connected as the carry-in of the third BCD adder and so on.

TTT T

<, <,
= 4-bit parallel adder (74LS83) te—2— Carry from
the lower position
adder

- T T 7
S, Sa| Sa2| S| Se As A A Ao sco
codo group

x
Carmy 1o the <«
next BCD adder

Co=o0

—~—— 4-bit parallel adder (74L583) "j—

I T3 & L3 X

X, sy  Fo = —
BCD sum addor

Logic diagram of a BCD adder using two 4-bit adders and a correction-detector circuit.

EXCESS-3(XS-3) ADDER:

To perform Excess-3 additions,
1. Add two xs-3 code groups
2. If carry=1, add 0011(3) to the sum of those two code groups
If carry =0, subtract 0011(3) i.e., add 1101 (13 in decimal) to the sum of those two
code groups.
Ex: Add 9 and 5

1100 9in Xs-3
+1000 5in xs-3
1 0100 there is a carry
+0011 0011 add 3 to each group
0100 0111 14in xs-3
1) (4)
EX:
(b) 0111 4inXS-3
+0110 3inXS-3
1101 nocarry

+1 101 Subtract 3 (i.e. add 13)
Ignorecarry l 1010 7inXS-3
(7)

Implementation of xs-3 adder using 4-bit binary adders is shown. The augend (As
A2A1A0) and addend (B3B2B1Bo) in xs-3 are added using the 4-bit parallel adder. If the carry is a
1, then 0011(3) is added to the sum bits S3S2S1So of the upper adder in the lower 4-bit parallel
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adder. If the carry is a 0, then 1101(3) is added to the sum bits (This is equivalent
to subtracting 0011(3) from the sum bits. The correct sum in xs-3 is obtained

Excess-3 (XS-3) Subtractor:
To perform Excess-3 subtraction,
1. Complement the subtrahend
2. Add the complemented subtrahend to the minuend.
3. If carry =1, result is positive. Add 3 and end around carry to the result . If carry=0,

the result is negative. Subtract 3, i.e, and take the 1‘s complement of the resuilit.

Ex: Perform 9-4

1100 9in xs-3
+1000 Complement of 4 n Xs-3
(1) 0100 There is a carry
+0011 Add 0011(3)
0111
1 End around carry
1000 5in xs-3

The minuend and the 1‘s complement of the subtrahend in xs-3 are added in the upper
4-bit parallel adder. If the carry-out from the upper adder is a 0, then 1101 is added to the sum
bits of the upper adder in the lower adder and the sum bits of the lower adder are
complemented to get the result. If the carry-out from the upper adder is a 1, then 3=0011 is
added to the sum bits of the lower adder and the sum bits of the lower adder give the result.

Binary Multipliers:

In binary multiplication by the paper and pencil method, is modified somewhat
in digital machines because a binary adder can add only two binary numbers at a time.
In a binary multiplier, instead of adding all the partial products at the end, they are
added two at a time and their sum accumulated in a register (the accumulator register).
In addition, when the multiplier bit is a 0,0s are not written down and added because it
does not affect the final result. Instead, the multiplicand is shifted left by one bit.

The multiplication of 1110 by 1001 using this process is
Multiplicand 1110
Multiplier 1001
1110 The LSB of the multiplier is a 1; write down the
multiplicand; shift the multiplicand one position to the left
(11100)
1110 The second multiplier bit is a 0; write down the previous
result 1110; shift the multiplicand to the left again (1110
00)
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The fourth multiplier bit is a 1 write down the new multiplicand add it to the first
partial product to obtain the final product.
1111110

This multiplication process can be performed by the serial multiplier circuit ,
which multiplies two 4-bit numbers to produce an 8-bit product. The circuit
consists of following elements
X register: A 4-bit shift register that stores the multiplier --- it will shift right on the
falling edge of the clock. Note that Os are shifted in from the left.
B register: An 8-bit register that stores the multiplicand; it will shift left on the
falling edge of the clock. Note that Os are shifted in from the right.

A register: An 8-bit register, i.e, the accumulator that accumulates the partial products.

Adder:An 8-bit parallel adder that produces the sum of A and B registers. The adder
outputs S7 through So are connected to the D inputs of the accumulator so that the sum
can be transferred to the accumulator only when a clock pulse gets through the AND gate.
The circuit operation can be described by going through each step in the
multiplication of 1110 by 1001. The complete process requires 4 clock cycles.

1. Before the first clock pulse: Prior to the occurrence of the first clock pulse, the
register A is loaded with 00000000, the register B with the multiplicand 00001110,
and the register X with the multiplier 1001. Assume that each of these registers is
loaded using its asynchronous inputs(i.e., PRESET and CLEAR). The output of the
adder will be the sum of A and B,i.e., 00001110.

2. First Clock pulse:Since the LSB of the multiplier (Xo) is a 1, the first clock pulse gets
through the AND gate and its positive going transition transfers the sum outputs into
the accumulator. The subsequent negative going transition causes the X and B
registers to shift right and left, respectively. This produces a new sum of A and B.

3. Second Clock Pulse: The second bit of the original multiplier is now in Xo . Since
this bit is a 0, the second clock pulse is inhibited from reaching the accumulator.
Thus, the sum outputs are not transferred into the accumulator and the number in
the accumulator does not change. The negative going transition of the clock pulse
will again shift the X and B registers. Again a new sum is produced.

4. Third Clock Pulse:The third bit of the original multiplier is now in Xo;since this bit
is a 0, the third clock pulse is inhibited from reaching the accumulator. Thus, the
sum outputs are not transferred into the accumulator and the number in the
accumulator does not change. The negative going transition of the clock pulse will
again shift the X and B registers. Again a new sum is produced.

5.Fourth Clock Pulse: The last bit of the original multiplier is now in Xo , and since it is a 1, the
positive going transition of the fourth pulse transfers the sum into the accumulator. The
accumulator now holds the final product. The negative going transition of the clock pulse shifts
X and B again. Note that, X is now 0000, since all the multiplier bits have been shifted out.

Code converters:

The availability of a large variety of codes for the same discrete elements of information
results in the use of different codes by different digital systems. It is sometimes necessary to use
the output of one system as the input to another. A conversion circuit must be inserted between the
two systems if each uses different codes for the same information. Thus a
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code converter is a logic circuit whose inputs are bit patterns representing numbers
(or character) in one cod and whose outputs are the corresponding representation in a
different code. Code converters are usually multiple output circuits.

To convert from binary code A to binary code B, the input lines must

supply the bit combination of elements as specified by code A and the output lines
must generate the corresponding bit combination of code B. A combinational
circuit performs this transformation by means of logic gates.
For example, a binary —to-gray code converter has four binary input lines B4, B3,B2,B1 and
four gray code output lines G4,G3G2,G1. When the input is 0010, for instance, the output
should be 0011 and so forth. To design a code converter, we use a code table treating it as
a truth table to express each output as a Boolean algebraic function of all the inputs.

In this example, of binary —to-gray code conversion, we can treat the
binary to the gray code table as four truth tables to derive expressions for Gas, G3,
G2, and G1. Each of these four expressions would, in general, contain all the four
input variables B4, B3,B2,and B1. Thus,this code converter is actually equivalent to
four logic circuits, one for each of the truth tables.

The logic expression derived for the code converter can be simplified using the
usual techniques, including _don‘t cares’ if present. Even if the input is an unweighted code,
the same cell numbering method which we used earlier can be used, but the cell numbers --
must correspond to the input combinations as if they were an 8-4-2-1 weighted code. s
Design of a 4-bit binary to gray code converter:

G,=Xm(8,9,10,11,12,13,14,15) G
G,=Xm(,5,6,7,8,9,10,11) G
G
G

4

B,+B,B,=B,®B,
B,+B,B,=B,®B,
B, +B,B, =B, ®B,

G,=Xm(2 3,4,5.10, 11,12, 13)
G,=Zm(1,2,5,6,9, 10, 13, 14)

()

3
I

B,
B,
B,
B,

4-bit binary 4-bit Gray
B, B, B, B, G, Gy G, G
o 0 0 0 0 0 0 O
0o 0 0 1 0o 0 o0 1
0o 0 1 o0 o o 1 1
0o 0 1 1 o 0 1 0
0o 1 0 0 0o 1 1 o0
o 1 0 1 0o 1 1 1 By G,
0o 1 1 0 0o 1 0 1
o 1 1 1 0 1 0 o0 a
1 0 0 0 1 1 0 0 By —t 3
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1 A
1 0 1 1 1 1 1 o0 8 ] G,
1 1 0 o0 1 0 1 o0 2 7
1 1 0 1 1 0 1 1 \
1 1 1 0 1 0 0 1 G,
1 1 1 1 1 0 0 O B,

(a) Conversion table (c) Logic diagram

4-bit binary-to-Gray code converter

| MREC(A)



DIGITAL ELECTRONICS

B8, B8,
BB o0 o1 11 10 B85 oo o1 11 10
G £ ] = = = 0] £ =
Lol ] O
a = ¥ = = 3 £ &
o1 o1 | [ i il 1]
1= LE ] 15 - = 13 Rl 14
11 i ] T 1
I =] - L] I‘Io ] - k] L]
10 1 ¥ b 1 1w | 3 i i ]
G, = B, G, = B, @ B,
K-rmap for &G HK-map for Gy
B.8, ) “ I BB,
B oo ot 11 10| oo o1 11 10
=3 - . - . B.85 - . e
oo I 1 1| oo 3 3
£) = ¥ = = = F &
o1 [T 7 o1 | T
(3 = 5 Ta = TS L3 i
ER ] 1 k 11 1 R
= = N} TG = E] L TG
10 T 1I 10 1 T
+ +
G, - B, @ B, G, - 8, @ B,
Moamap for Gu Memap tor Gy

() K-rmaps
“-bDit binary-to-Gray code converter.

Design of a 4-bit gray to Binary code converter:

B,=Xm(12, 13.15. 14,10, 11,9, 8)=>Xm(8, 9, 10, 11, 12, 13, 14, 15)
B,=Xm(6.7.5.4,10.11.9.8)=Xm(4.5.6.7.8.9, 10, 11)
B,=Xm(3.2.5.4. 15,14, 9. 8) =X m(2.3.4. 5.8, 9. 14, 15)
B,==Xm(1.2,.7.4,.13, 14.11.8) =X m(1.2. 4, 7.8, 11. 13, 14)
By=G, =~
B;=G,G,+G,G,=G,®G,
B, = G,G,G, + G,G,G, + G,G,G, + G,G,G,
=GyG; D G,)+G (G 9G,)=G,; G, ©G,=B,BG,
B, = G,G;G,G, + G,G;G,G, + G,G,G,G, + G,G,G,G, + G G,Gz
+ G,G,G,G, +GGGG+ .G,G,G,
=G,G4(G, ®G,) +G,G,(G,®G,) + G,Gy(G, ®G,) +G,G,(G, ®G,)
=(G,®G,)G, ®G,)+(G, ®G, (G, ®G,)
=G,;8G;8G,8G,
4-bit Gray 4-bit binary
G, G, G, G, B, B, B, B,
o] o o o “© o o o
o o o 1 o o o 1
o o 1 1 o o 1 o
o o 1 o o o 1 1
o 1 1 o c 1 o o Ga B,
o 1 1 1 o 1 o 1
o 1 o 1 o 1 1 o B,
o 1 o o o 1 1 1 G,
1 1 o o 1 o o o
3 1 o 1 1 o o 1
1 1 1 1 1 o 1 o B.
1 1 1 o 1 o 1 1 G2
1 o 1 o 1 1 o o
1 o 1 1 1 1 o 1
1 o o 1 1 1 1 o B,
1 o o o 1 1 1 1 G,
(a) Conversion table (c) Logic diagram
GzG‘OO 01 11 10 iy 00 o1 11 10
GG Tl 1 3] 2 GG 3 3 2
00 00
r 5 7 O ‘_J 5 7 e
o1 o1 1 1 1 1]
12 13 15 14 12 13 15 14
11 1 i i 11
8 El " 10 a o 1 10
10 1 t 1 1 1 10 1 - 1 1 1|—I
B.,=G, B,=G,® G,
K-map for B, K-map for B,
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G.G, o GG,

G 1 11 10 G 00 o1 11 10
4G G i 3 z 4G3 o 7 3 E
00 O 00 1 1

] 5 T B [ 5 7| [
o1 1 1 o1 1 1 1 1

3 EE] 5 % iz i3 5 T4
11 1 'II 11 1 1

3 g g ] 3 g EE] 0
10 I 1 1 I 10 1 1

B,= G, ® G, ® Gy B,=0G,80,2G,® G,

K-map for B, (b} K-maps K-map for B,

4-bit Gray-to-binary code conwverter.

Design of a 4-bit BCD to XS-3 code converter:

8421 code ICE-E3 ol X, =X m(S5, 6. 7. 8, 9) + d(10, 11, 12, 13, 14, 15)
By ® =, =, e Wy K Xa=XEm(1, 2, 3, 4, 9) +d(10, 11, 12, 13, 14, 15)
S ° o © o ° 3 i X, = = m(0, 3, 4. 7. 8) + d(10, 11, 12, 13, 14, 15)
o o 1 o o 1 o 1 X, =Xm(0, 2, 4,6,8) +d(10, 11, 12, 13, 14, 15)
2 B e B idY e
IS R R I Xo = BE.B, + B8, + B8,

1
1 o o ) 1 o 1 1 Xp=E,H, 8.8,
1 o o 1 1 1 o o x, =8,
(a) Conversion table (b) Minimal expressions
4-bit BCD-to-XS-3 code converter
Bzatw 01 1 10 BzB\m 01 1 10
BB B
o 0 1 3 2 83 1 3 2]
00 00 1 1 1
4 5 . 6 4 5 7 6
01 1 1 1 01
12 13 5 14| 13 15 14
1 x x x x 1" x x x
8 9 n N0 8 9 1 10
10 |1 1 x x 10 1 x x
X,=B,+B;B,+B8, X,=B,8,8,+B,8,+8.8,
K-map for X, K-map for X,
333'00 5 4 " 329‘00 a
B 0 1 1 B 1 1 10
B3 === | 2| B3 0 i 3 2
00| |1 1 00| 1 1
4 5 ’;i 6 4 5 7 6
01 |1 1 01| 1 1
2 13 15 4 12 13 15 14
1] |x x x x 1] % X X X
8 9 1 10 8 9 1" 10
10] |1 x x 10| 1 x x
X, =B,B, + B8, X, =B,
K-map for K-map for X
G sk (c) K-maps 3
4-bit BCD-to-XS-3 code converter.
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Design of a BCD to gray code converter:

BCD code Gray code

8 © B, B, G, G, G, Go e .
o o o o o o (¢} o G,
o o o 1 o o o 1 B,

o o 1 o o o 1 1
o o 1 1 o o 1 o
o 1 o o o 1 1 o G
o 1 o 1 o 1 1 1 B8, 1
o 1 1 o o 1 o 1
o 1 1 1 o 1 o o
1 o o o 1 1 o o G,
1 o o 1 1 1 o 1 By

(a) BCD-to-Gray code conversion table (b) Logic diagram

BCD-to-Gray code converter.

- e =,.8,
oo o1 i) 1o oo o1 i) 1o
L= B = - - = = s.8 &1 v = =
oo oo
= - = = > -
o ov |7 + 1
S E— ) i S = 2 35 5 S -
| = = = =1\ = = =1|
- - ¥ e & = 5 e
ol 1= = =1 =} = = = |
Sy = B, Ch, = B3, - €3,
=.e, =.e,
PSS co o |+ sol Po——— oo o s 1o
- = ¥ =
oo * R oo I ]
= > - = = —
o |+ . el o ) .
= = e e s e e a
e 1= | = - | = - - -
- - e = - ¥ o
1o I > —1 o * = =
¥ 1
G, -2, 8.8, —a, e s, G, =8B.8, 8, B, -8, ® B,

HKoamaps for a BOCD-to-Gray CcoOde CcoOmnvester.

Design of a SOP circuit to Detect the Decimal numbers 5 through 12 in a 4-bit gray code
Input:

Docimal 4-bit Gray code  Output
number A B © O T

5 © o o o =)

1 o o o 1 o

2 o0 3% 2 o

3 o o 1 o o

a o 1 1 o o co

s o 1% o 1 AS oo o1 11 1o

s o 3 | (=] 1 1 O] v 3 E-J =3

7 o 1 o o 1 oG

a8 + 1 o o 1 = = ¥ s <

1o - 3 gt | N B ] o L2

E) 3

11 *+ 1 1 o 1 11 e ] l,l' al’ T i o

12 1 o 1 o 1 =~ = “I lm A

13 1 o, 3 4 o c

1
14 1 o o 1 o L L] s
1s 1 o o o o

i = BC +~ BOD +~ ACD
(a) Truth table (b)) K-map () NAND logic
Truth table, K-map and logic diagram for the SOP circuit.

Design of a SOP circuit to detect the decimal numbers 0,2,4,6,8 in a 4-bit 5211
BCD code input:

Decimal 5211 code Output cD
number A B CD f AB 00 01 11 10
) 0000 1 ol 1t Yi"trs x
1 o 0 0 1 o
2 00 1 1 1 4 5 7 € D—1I
3 010 1 o o1] x 1 % = >
4 o 1 1 1 1 12 13 15 a4 -
s 1 0 00 1] 11 x 1 c—
6 1010 1 A s a3 o
7 11 00 0 10 x x 1 I I
8 1110 1 D—
S 11 1 1 0 fin = AD + AC + CD
(a) Truth table (b) K-map (c) Logic diagram

Truth table, K-map and logic diagram for the SOP circuit.

| MREC(A)



DIGITAL ELECTRONICS

Design of a Combinational circuit to produce the 2’s complement of a 4-bit binary number:

Comparators:

Input Output
A B C D E F G H
0 0 o0 o 0 0 0 o0
0 0 0 1 1 1 1 1
0 0 1 0 1 1 1 0
0 0 1 1 1 1 0 1
0o 1 0 0 1 1 0 0
0 1 0 1 1 0 1 1
0 1 1 0 1 0 | 0
0 1 1 1 1 0 0 1
1 0 0 0 1 0 0 0
1 0 o0 1 0 1 1 1
1 0 1 0 0 1 1 0
1 0 1 1 0 1 0 1
1 1 0 0 0 1 0 0
1 1 0 1 0 0 1 1
1 1 1 0 o 0o 1 0
1 1 1 1 o 0 o0 1
(a) Conversion table

Conversion table and K-maps for the circuit

—.
F 11 _ 1 _ 1111
L1 11 I
o 1 2 3 a
co
AB oo o1 11 10,
O 1 3 2
oo ||[ 1] 1 3 1 ]
- 5 7 s
o1 1 1
2 3 15 14
11 > > > >
) ) 1 10
1 /L8 I N L
" tp=Bs+TD+CD

(b)) K-map

EQUALITY = (A, ® B,)(A, O B,)lA, O B,)(A, © By

A ————

B—.

1-bit
comparator

———
——

— > 5

Block diagram of a 1-bit comparator.
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1. Magnitude Comparator:

The logic for a 1-bit magnitude comparator: Let the 1-bit numbers be A=A and B=B,,
IfA,=1and B;=0, then A > B.

Therefore, "
A>B:G=A.B,
IfA,=0and B,= 1, then A <B.
Therefore,
A<B:L=AB,
IonandBocoincide.i.e.A0=Bo=OorifA0=Bo=l.tbenA=B.
Therefore,
A=B:E=A(,OB0
—[><>—D—"‘°‘“
AD A%
1 5 ) D—n-em
[+] 1 1 (o] o
: e s e D

(a) Truth table (b) Logic diagram
1-bit comparator.

1- bit Magnitude Comparator:
The logic for a 2-bit magnitude comparator: Let the two 2-bit numbersbe A=A A,and B=B, B,

I.IfA;=1and B =0, thenA> B or
2.If A, and B, coincide and A;= 1 and B = 0, then A > B. So the logic expression for A > B is

A>B:G=AB, +(A 0B)AB,
I.IfA,=0and B,=1,thenA <Bor
2.1f A, and B, coincide and A= 0 and B =1, then A< B. So the expression for A <B is

A<B:L=AB, +(A OB)AB,
If A, and B, coincide and if A; and B coincide then A = B. So the expression for A =B is
A=B:E=(A OB,)(A,0B)

Logic diagram of a 2-bit magnitude comparator.
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4- Bit Magnitude Comparator:

The logic for a 4-bit magnitude comparator: Let the two 4-bit numbers be A = A;AA A, and
B = B,B,B,B,.

1.IfA;=1and B, =0, then A >B. Or

2. If A, and B, coincide, and if A, = 1 and B, =0, then A > B. Or

3. If A, and B, coincide, and if A, and B, coincide, andif A, =1 and B, =0, then A > B. Or

4. If A, and B, coincide, and if A, and B, coincide, and if A| and B, coincide, and if A, = 1
and B, =0, then A > B.

From these statements, we see that the logic expression for A > B can be written as
(A>B)=A,B,; + (A, © By)A,B, + (A, © B,)(A, © By)A, B, B
+(A, O B)(A,OB,)A, ®B)AB,

Similarly, the logic expression for A < B can be written as
A<B=AB,+(A,®B,)A,B, +(A, OB,(A, ®B,A B,
+(A,;0B,)(A, 0B,)(A, ©B)AB,
If A, and B, coincide and if A, and B, coincide and if A, and B, coincide and if A; and B
coincide, then A = B.
So the expression for A = B can be written as
(A=B)=(A; OB,)(A, OB,)(A, OB )XA,O B

B,
et . J
5, A _ﬂ %—A>B
5 ™
- Lt
Ay
B,
. L L
B,
A l_—}“a
B,
Ao
B,
Ay )
8, L/
. )
B—2 A :%:>_A<B
_/
By — Ty
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NS
B,—1 _ 16 — Ve
A,—]2 15—A,
(A=B)our—1 3 144+—8B,
(A>B)y—14 13— (A > B)our
(A<B)y—{5 12 — (A < B)oyr
(A=8B)y—{6 11+—B,
A, —7 10—A,
GND — 8 9 —B,
7485
(a) Pin diagram of 7485
LSBs MSBs
As—1As (A <B)our Av—1Ac (A<B)gyr—(A<B)
A,— A, (A=B)our A,—A, (A=B)oyr—(A=B)
A, — A, (A > B)our Ag— A, (A>B)oyr — (A>B)
As—As Ar— Ay
+Vee (A <B)y, (A <B)y
(A =By (A =B)y,
I__I: (A > B)y, (A >B)y
T BB B,—1Bo
B,—{8, B.—{B,
8.—{B. By—{B:
B;—{8s 8,—B,
7485 (b) Cascading of two 7485s 7485
Pin diagram and cascading of 7485 4-bit comparators.
ENCODERS:
X As
x3 A2
S-bit P -
number X zf :; A>BPb X=>Y
Xog—A>=B : [
748S X=Y Outputs
Y B,
- Y3 B2 A<BP X <V¥Y
S5-bit Yo B,
ne Gl :; :':B A=8Bpb— Not usea
=L |8

Use of 7485 as a S5-bit comparator.

—

—oO O,

—o O,
E
~N —o O,
c bt
o > output
D e code
=3
R

—© O,y >
—O O, ,

Block diagram of encoder.

Octal I‘np\ns

D. D, D, D; Ds D,

| U=

%—.
A, —
A, —al
a
only one
HIGH at =
a time
Ao —
Ay —
Octal to Binary Encoder:
‘D
Octal gigits Binary '
Az A, Ao
Do o o o o
D, 1 o o 1
D2 2 o 1 o
D, 3 o 1 1
o, 4 1 o o
D s 1 o 1
D, =3 1 1 o
D z 1 1 1
(a) Truth table

(b) Logic diagram

Octal-to-binary encoder.
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Decimal to BCD Encoder:

Binary
Decimal inputs A, A, A, Ag
1o Dy 0 o 0O 0 O
1 D, 1 o 0o o 1
2 — D, 2 o o 1 O
| 1
e ) Lo TR - -
Decimal | __| — | outputs 4
inputs __; e S [ D, 5 o 1 o0 1
6 Dg 6 o 1 1 0
—_7 D, 4 o 1 1 1
—i8 D, 8 1 0 0 O
L—s Dg 9 1 o o 1
(a) Logic symbol (b) Truth table
Decimal inputs
D! D? D:! 04 Ds DO 07 DB 09
4 ~
As
=D—n
BCD
m— outputs
=+
Ao

-

(c) LTgic diagram
Decimal-to-BCD encoder.

Tristate bus system:

In three-state, tri-state, or 3-statelogic allows an output port to assume a high

impedance state in addition to the 0 and 1 logic levels, effectively removing the
output from the circuit.

This allows multiple circuits to share the same output line or lines (such as a bus
which cannot listen to more than one device at a time).

Three-state outputs are implemented in many registers, bus drivers, and flip-flops in the
7400 and 4000 series as well as in other types, but also internally in many integrated
circuits. Other typical uses are internal and external buses in microprocessors, computer
memory, and peripherals. Many devices are controlled by an active-low input called OE
(Output Enable) which dictates whether the outputs should be held in a high-impedance
state or drive their respective loads (to either 0- or 1-level).

s INFPUT OoOuUTPUT
I\I\ (=] ~ B "o

B3 [ pa—
L = £ = =

A tristate buffer can be thought of as a switch_If 8is &3
on, the switch is closed. IT B is off, the switch is open

1
1

X/ 0

o Z (high impedance)

| MREC(A)



DIGITAL ELECTRONICS

MODULE-IV:

Sequential Logic Circuits - |

Sequential circuits

Classification of sequential circuits: Sequential circuits may be classified as two types.

1. Synchronous sequential circuits
2. Asynchronous sequential circuits

Combinational logic refers to circuits whose output is strictly depended on the present
value of the inputs. As soon as inputs are changed, the information about the previous
inputs is lost, that is, combinational logics circuits have no memory. Although every digital
system is likely to have combinational circuits, most systems encountered in practice also
include memory elements, which require that the system be described in terms of
sequential logic. Circuits whose output depends not only on the present input value but
also the past input value are known as sequential logic circuits. The mathematical model of
a sequential circuit is usually referred to as a sequential machine.

Combination=al
I ogeic Clircuit

Frrirrazarw <>wats>uiat=

Secornciary
Firagoost=s

Secomnmcaary
ratg>uIt=

NMormory
Flomoents

Comparison between combinational and sequential circuits

Combinational circuit

$equential circuit

1. In combinational circuits, the
output

variables at any instant of time are
dependent only on the present input
variables

2.memory unit is not requires in
combinational circuit

3. these circuits are faster because
the delay between the i/p and o/p

due to propagation delay of gates
only

4. easy to design

1. in sequential circuits the output variables at
any instant of time are dependent not only on
the present input variables, but also on the
present state

2.memory unit is required to store the past
history of the input variables

3. sequential circuits are slower than
¢ombinational
gircuits

4. comparatively hard to design
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Level mode and pulse mode asynchronous sequential circuits:

PEMES =2 Combinational Logic ==z outputs

—~== Memory | ;-=--

Internal states

Figure 1: Asynchrenous Sequential Circuit

Fig shows a block diagram of an asynchronous sequential circuit. It consists of a
combinational circuit and delay elements connected to form the feedbackloops.
The present state and next state variables in asynchronous sequential circuits
called secondary variables and excitation variables respectively..

There are two types of asynchronous circuits: fundamental mode circuits
and pulse mode circuits.

Synchronous and Asynchronous Operation:

Sequential circuits are divided into two main types: synchronous and
asynchronous. Their classification depends on the timing of their signals.Synchronous
sequential circuits change their states and output values at discrete instants of time, which
are specified by the rising and falling edge of a free-running clock signal. The clock signal
is generally some form of square wave as shown in Figure below.

¢ Clock Period o)

Falling edge
< <
Clock width Rising edge

From the diagram you can see that the clock period is the time between successive
transitions in the same direction, that is, between two rising or two falling edges. State
transitions in synchronous sequential circuits are made to take place at times when the
clock is making a transition from 0 to 1 (rising edge) or from 1 to O (falling edge). Between
successive clock pulses there is no change in the information stored in memory.

The reciprocal of the clock period is referred to as the clock frequency. The clock width
is defined as the time during which the value of the clock signal is equal to 1. The ratio of the
clock width and clock period is referred to as the duty cycle. A clock signal is said to
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be active high if the state changes occur at the clock's rising edge or during the
clock width. Otherwise, the clock is said to be active low. Synchronous sequential
circuits are also known as clocked sequential circuits.

The memory elements used in synchronous sequential circuits are usually flip-

flops. These circuits are binary cells capable of storing one bit of information. A flip-flop
circuit has two outputs, one for the normal value and one for the complement value of the
bit stored in it. Binary information can enter a flip-flop in a variety of ways, a fact which
give rise to the different types of flip-flops. For information on the different types of basic
flip-flop circuits and their logical properties, see the previous tutorial on flip-flops.
In asynchronous sequential circuits, the transition from one state to another is initiated by
the change in the primary inputs; there is no external synchronization. The memory
commonly used in asynchronous sequential circuits are time-delayed devices, usually
implemented by feedback among logic gates. Thus, asynchronous sequential circuits may
be regarded as combinational circuits with feedback. Because of the feedback among logic
gates, asynchronous sequential circuits may, at times, become unstable due to transient
conditions. The instability problem imposes many difficulties on the designer. Hence, they
are not as commonly used as synchronous systems.

Fundamental Mode Circuits assumes that:

1. Theinput variables change only when the circuit is stable
2. Only one input variable can change at a given time
3. Inputs are levels are not pulses

A pulse mode circuit assumes that:

1. Theinput variables are pulses instead of levels
2. The width of the pulses is long enough for the circuit to respond to the input

3. The pulse width must not be so long that is still present after the new state is reached.

Latches and flip-flops

Latches and flip-flops are the basic elements for storing information. One latch
or flip-flop can store one bit of information. The main difference between latches and
flip-flops is that for latches, their outputs are constantly affected by their inputs as
long as the enable signal is asserted. In other words, when they are enabled, their
content changes immediately when their inputs change. Flip-flops, on the other hand,
have their content change only either at the rising or falling edge of the enable signal.
This enable signal is usually the controlling clock signal. After the rising or falling
edge of the clock, the flip-flop content remains constant even if the input changes.

There are basically four main types of latches and flip-flops: SR, D, JK, and T. The major
differences in these flip-flop types are the number of inputs they have and how they change state.

For each type, there are also different variations that enhance their operations. In this chapter, we
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will look at the operations of the various latches and flip-flops.the flip-flops has two outputs,

labeled Q and Q‘. the Q output is the normal output of the flip flop and Q° is the inverted output.

- a ey normal output

ar — IiNnverted
ocoutput

Figure: basic symbol of flipflop

A latch may be an active-high input latch or an active —LOW input latch.active —
HIGH means that the SET and RESET inputs are normally resting in the low state and
one of them will be pulsed high whenever we want to change latch outputs.

SR latch:

The latch has two outputs Q and Q‘. When the circuit is switched on the latch may
enter into any state. If Q=1, then Q‘=0, which is called SET state. If Q=0, then Q‘=1, which is
called RESET state. Whether the latch is in SET state or RESET state, it will continue to
remain in the same state, as long as the power is not switched off. But the latch is not an
useful circuit, since there is no way of entering the desired input. It is the fundamental
building block in constructing flip-flops, as explained in the following sections

NAND latch

NAND latch is the fundamental building block in constructing a flip-flop. It has
the property of holding on to any previous output, as long as it is not disturbed.

The opration of NAND latch is the reverse of the operation of NOR latch.if O‘s
are replaced by 1‘s and 1‘s are replaced by 0‘s we get the same truth table as that
of the NOR latch shown

s "1 N3 ~n @
R L o

NOR latch

s _— =
Q S R Q Q Function
(0] (0} & & aQt Storage State

(6] 1 (6] fl Reset

Q 1 0 1 0 Set

R 1 1 0-7? 0-7? Indeterminate

State
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The analysis of the operation of the active-HIGHNOR latch can be summarized as follows.

1. SET=0, RESET=0: this is normal resting state of the NOR latch and it has no
effect on the output state. Q and Q‘ will remain in whatever stste they were
prior to the occurrence of this input condition.
SET=1, RESET=0: this will always set Q=1, where it will remain even after SET returns to O
3. SET=0, RESET=1: this will always reset Q=0, where it will remain even after
RESET returns to O
4. SET=1,RESET=1; this condition tries to SET and RESET the latch at the same time, and
it produces Q=Q‘=0. If the inputs are returned to zero simultaneously, the resulting
output stste is erratic and unpredictable. This input condition should not be used.

N

The SET and RESET inputs are normally in the LOW state and one of them will
be pulsed HIGH. Whenever we want to change the latch outputs..

RS Flip-flop:

The basic flip-flop is a one bit memory cell that gives the fundamental idea of
memory device. It constructed using two NAND gates. The two NAND gates N1 andN2
are connected such that, output of N1 is connected to input of N2 and output of N2 to
input of N1. These form the feedback path the inputs are S and R, and outputs are Q
and Q‘. The logic diagram and the block diagram of R-S flip-flop with clocked input

e Cen
cp CP >
D=y == —r a

2

b) Block diagram

a) Logic diagram

Figure: RS Flip-flop

The flip-flop can be made to respond only during the occurrence of clock pulse
by adding two NAND gates to the input latch. So synchronization is achieved. i.e.,
flip-flops are allowed to change their states only at particular instant of time. The
clock pulses are generated by a clock pulse generator. The flip-flops are affected
only with the arrival of clock pulse.

Operation:

1. When CP=0 the output of N3 and N4 are 1 regardless of the value of S and R. This is
given as input to N1 and N2. This makes the previous value of Q and Q‘unchanged.

2. When CP=1 the information at S and R inputs are allowed to reach
the latch and change of state in flip-flop takes place.

3.CP=1, S=1, R=0 gives the SET state i.e., Q=1, Q‘=0.
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4. CP=1, S=0, R=1 gives the RESET state i.e., Q=0, Q‘=1.
5. CP=1, S=0, R=0 does not affect the state of flip-flop.

6. CP=1, S=1, R=1is not allowed, because it is not able to determine the
next state. This condition is said to be a —race conditionll.

In the logic symbol CP input is marked with a triangle. It indicates the circuit
responds to an input change from O to 1. The characteristic table gives the
operation conditions of flip-flop. Q(t) is the present state maintained in the flip-flop
at time _t‘. Q(t+1) is the state after the occurrence of clock pulse.

Truth table

S R Q-1 Comments
0 0 Q, No change
0 | 0 Reset / clear
| 0 1 Set

| | " Not allowed

Edge triggered RS flip-flop:

Some flip-flops have an RC circuit at the input next to the clock pulse. By the design of the
circuit the R-C time constant is much smaller than the width of the clock pulse. So the output
changes will occur only at specific level of clock pulse. The capacitor gets fully charged when
clock pulse goes from low to high. This change produces a narrow positive spike. Later at the
trailing edge it produces narrow negative spike. This operation is called edge triggering, as the
flip-flop responds only at the changing state of clock pulse. If output transition occurs at rising

edge of clock pulse (0[J1),t is called positively edge triggering. If it occurs at trailing edge ( 10
0) it is called negative edge triggering. Figure shows the logic and block diagram.

s L
cP -
R (=) T—
b) Block diagram of positive edge triggered flip-flop
s Q ——
cpP —>
—Rr a ———

a) Logic diagram of edge triggered RS flip-flop

) Block diagram of negative edge triggered flip-flop

Figure: Edge triggered RS flip-flop
D flip-flop:

The D flip-flop is the modified form of R-S flip-flop. R-S flip-flop is converted to D
flip-flop by adding an inverter between S and R and only one input D is taken
instead of S and R. So one input is D and complement of D is given as another
input. The logic diagram and the block diagram of D flip-flop with clocked input
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When the clock is low both the NAND gates (N1 and N2) are disabled and Q
retains its last value. When clock is high both the gates are enabled and the input
value at D is transferred to its output Q. D flip-flop is also called —Data flip-flopll.

Edge Triggered D Flip-flop:

CI’HQI_

1) Logic diagram

Figure: truth table, block diagram, logic diagram of edge triggered

PRESET

CLEAR

Truth table

CP D Q
0 X Previous state
i 0 0
1 1 1
Q
d
J, Pr
—Db Qa
cP > Qa
T Cir
b) Block diagram
Truth table
PRESET CLEAR (=5 =2 [5) [&]
o O = > =(forbidden)
O 1 x > 1
1 (8] x x> o
(8] O s NC
1 1 = NC
A | x NC
T (8]
T 1

1
1
1
1

O
1

flip-flop JK flip-flop (edge triggered JK flip-flop)

The race condition in RS flip-flop, when R=S=1 is eliminated in J-K flip-flop. There is a

feedback from the output to the inputs. Figure 3.4 represents one way of building a JK flip-flop.
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L
J»—BU_D e

CP
|
Ko | N4 D +—4ieQ
_—J
= cLk —+ @
— K @
a) Logic diagram b) Block diagram
Truth table
J K | Q- | Comments
0 0 Q No change
0 1 0 Reset [/ clear
1 0 1 Set
1 I Q" | Complement
togele.

Figure: JK flip-flop

The J and K are called control inputs, because they determine what the
flip-flop does when a positive clock edge arrives.

Operation:

1. When J=0, K=0 then both N3 and N4 will produce high output and the
previous value of Q and Q‘ retained as it is.

2. When J=0, K=1, N3 will get an output as 1 and output of N4 depends on
the value of Q. The final output is Q=0, Q‘=1 i.e., reset state

3. When J=1, K=0 the output of N4 is 1 and N3 depends on the value of Q°.
The final output is Q=1 and Q‘=0 i.e., set state

4. When J=1, K=1 it is possible to set (or) reset the flip-flop depending on
the current state of output. If Q=1, Q‘=0 then N4 passes ‘0‘to N2 which produces
Q‘=1, Q=0 which is reset state. When J=1, K=1, Q changes to the complement of
the last state. The flip-flop is said to be in the toggle state.

The characteristic equation of the JK flip-flop is:

Qn('.r! == ]a + FQ
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JK flip-flop operationI@1

Characteristic table | Excitation table

J K Qnext Comment Q Qnrext J K Comment

0 0Q hold state 0 O 0 X |Nochange

0 10 reset 0 1 1 X |Set

1| 01 set 1 0 X 1 |Reset

1 1Q toggle 1 1 X 0 |Nochange

T flip-flop:

If the T input is high, the T flip-flop changes state ("toggles") whenever the clock
input is strobed. If the T input is low, the flip-flop holds the previous value. This
behavior is described by the characteristic equation

Figure : symbol for T flip flop
Qnezt =T @& Q =TQ+ TQ (expanding the XOR operator

When T is held high, the toggle flip-flop divides the clock frequency by two; that is,
if clock frequency is 4 MHz, the output frequency obtained from the flip-flop will be 2 MHz
This "divide by" feature has application in various types of digital counters. A T flip-flop
can also be built using a JK flip-flop (J & K pins are connected together and act as T) or D
flip-flop (T input and Previous is connected to the D input through an XOR gate).
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T flip-flop operationlﬁ1

Characteristic table Excitation table

T Q ezt Comment (0 Q,ert T Comment

00 O hold state (no clk) 0 O 0 No change

01 1 hold state (noclk) 1 1 0 No change

10 1 toggle 0 1 1 Complement

11 O toggle 1 0 1 Complement

Flip flop operating characteristics:

The operation characteristics specify the performance, operating requirements,
and operating limitations of the circuits. The operation characteristics mentions here
apply to all flip-flops regardless of the particular form of the circuit.

Propagation Delay Time: is the interval of time required after an input signal has
been applied for the resulting output change to occur.

Set-up Time: is the minimum interval required for the logic levels to be maintained
constantly on the inputs (J and K, or S and R, or D) prior to the triggering edge of
the clock pulse in order for the levels to be reliably clocked into the flip-flop.

Hold Time: is the minimum interval required for the logic levels to remain on the
inputs after the triggering edge of the clock pulse in order for the levels to be
reliably clocked into the flip-flop.

Maximum Clock Frequency: is the highest rate that a flip-flop can be reliably
triggered. Power Dissipation: is the total power consumption of the device. It is
equal to product of supply voltage (Vcc) and the current (Icc).

P=Vcc.lcc

The power dissipation of a flip flop is usually in mW.

Pulse Widths: are the minimum pulse widths specified by the manufacturer for the
Clock, SET and CLEAR inputs.

Clock transition times: for reliable triggering, the clock waveform transition times
should be kept very short. If the clock signal takes too long to make the transitions
from one level to other, the flip flop may either triggering erratically or not trigger at all.
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Race around Condition
The inherent difficulty of an S-R flip-flop (i.e., S = R = 1) is eliminated by using the

feedback connections from the outputs to the inputs of gate 1 and gate 2 as shown in Figure.
Truth tables in figure were formed with the assumption that the inputs do not change during the
clock pulse (CLK =1). But the consideration is not true because of the feedback connections

| Trailin g or ne g'atwe E’C'QE
Leading or positive edge ‘

"—Tj

o

o T

Consider, for example, that the inputs are J =K =1 and Q =1, and a pulse as
shown in Figure is applied at the clock input.

After atime interval t equal to the propagation delay through two NAND gates in

series, the outputs will change to Q = 0. So now we haveJ =K =1and Q =0.

After another time interval of t the output will change back to Q = 1. Hence, we
conclude that for the time duration of tP of the clock pulse, the output will oscillate
between 0 and 1. Hence, at the end of the clock pulse, the value of the output is not
certain. This situation is referred to as a race-around condition.

Generally, the propagation delay of TTL gates is of the order of nanoseconds. So if
the clock pulse is of the order of microseconds, then the output will change
thousands of times within the clock pulse.

This race-around condition can be avoided if tp<t < T. Due to the small propagation
delay of the ICs it may be difficult to satisfy the above condition.

A more practical way to avoid the problem is to use the master-slave (M-S)
configuration as discussed below.

Applications of flip-flops:

Frequency Division: When a pulse waveform is applied to the clock input of
a J-K flip-flop that is connected to toggle, the Q output is a square wave with half
the frequency of the clock input. If more flip-flops are connected together as
shown in the figure below, further division of the clock frequency can be achieved

Parallel data storage: a group of flip-flops is called register. To store data of
N bits, N flip-flops are required. Since the data is available in parallel form. When a
clock pulse is applied to all flip-flops simultaneously, these bits will transfer will be
transferred to the Q outputs of the flip flops.

Serial data storage: to store data of N bits available in serial form, N number
of D-flip-flops is connected in cascade. The clock signal is connected to all the flip-
flops. The serial data is applied to the D input terminal of the first flip-flop.
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Transfer of data: data stored in flip-flops may be transferred out in a serial fashion,
i.e., bit-by-bit from the output of one flip-flops or may be transferred out in parallel form.

Excitation Tables:

Previous State -> Present State “

PreviousState -> Present State ““

0->0
0->1
1->0
1->1

0->0
0->1
1->0
1->1

0->0
0->1
1->0
1->1

Conversions of flip-flops:

-

X X = 0O

0
1
0
X

= 5l - K

O = X X

X
0
1
0

Previous State -> Present State

0->0 0
0->1 1
10 1
1->1 0

Al

T Conversion : Twpe A FF

E— Logic - (given)

|

Twvpe B FF (desired)
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The key here is to use the excitation table, which shows the necessary
triggering signal (S,R,J,K, D and T) for a desired flip-flop state transition :

@ Qe+ |S R|J K|D|T

0 0 0 x|0 x|[O0|DO

0 1 1 0|1 x 1 1

1 0 0 L1 i 0|1

1 1 x O|x 0|10

Convert a D-FF to a T-FF:
Q
T f) D-FF
—— - > e —

Feanlil
clock

We need to design the circuit to generate the triggering signal D as a function of T and Q:
. Consider the excitation table:

D= f(T,Q).

Q¢ Q1 |T|[D

0 0 (00

0 1 1|1

1 0 |1]0

1 1 01

Treating as a function of and current FF state , we have
Do 12
T 7 D-FF
D Q
D=TQ+TQ =T®Q clock l—

Convert a RS-FF to a D-FF:

We need to design the circuit to generate the triggering signals S and R
as functions of and consider the excitation table:
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Qe Q1 |D|S R
0 0 010 x
0 1 1|1 O
1 0 0|0 1
1 1 l|x O

The desired signal and can be obtained as functions of and current

FF state from the Karnaugh maps:

Convert a RS-FF to a JK-FF:

We need to design the circuit to generate the triggering signals S and R as functions of, J,

K

Consider the excitation table: The desired signal and as functions of, and current

0 pN\ 0 1
0 0| X1|1
1] X 1 0
S=D R=D’
S Q
D I
R Q!
clock

FF state can be obtained from the Karnaugh maps:

Q

5 S

—1 ? D

K — R
clock

@

Q Q+1|J K|S R
0 0 0 x|0 x
0 1 i1 %11 ®
1 0 x 1|0 1
1 1 x D|x 0O
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K-maps:
QJ QJ
K 00 01 11 10 K 00 01 11 10
0 0|1 |X | X 0 0 0 0
“ n 1 n n - Y n “ -
1 v 4 v v 1| & 0 i1
S=Q’J R=0QK
— S >
- P
D T
S:Q’J, R = 0K
clock

The Master-Slave JK Flip-flop:

The Master-Slave Flip-Flop is basically two gated SR flip-flops connected
together in a series configuration with the slave having an inverted clock pulse. The
outputs from Q and Q from the "Slave" flip-flop are fed back to the inputs of the
"Master" with the outputs of the "Master" flip-flop being connected to the two inputs of
the "Slave" flip-flop. This feedback configuration from the slave's output to the
master's input gives the characteristic toggle of the JK flip-flop as shown below.

The input signals J and K are connected to the gated "master" SR flip-flop which "locks"
the input condition while the clock (CIk) input is "HIGH" at logic level "1". As the clock input of
the "slave" flip-flop is the inverse (complement) of the "master” clock input, the "slave" SR flip-
flop does not toggle. The outputs from the "master" flip-flop are only "seen" by the gated
"slave" flip-flop when the clock input goes "LOW" to logic level "0". When the clock is "LOW",
the outputs from the "master" flip-flop are latched and any additional changes to its inputs are
ignored. The gated "slave" flip-flop now responds to the state of its inputs passed over by the
"master" section. Then on the "Low-to-High" transition of the clock pulse the inputs of the
"master" flip-flop are fed through to the gated inputs of the "slave" flip-flop and on the "High-to-
Low" transition the same inputs are reflected on the output of the "slave"” making this type of
flip-flop edge or pulse-triggered. Then, the circuit accepts input data when the clock signal is
"HIGH", and passes the data to the output on the falling-edge of the clock signal. In other
words, the Master-Slave JK Flip-flop is a "Synchronous" device as it only passes data with the
timing of the clock signal.
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MODULE-V:
Sequential Logic Circuits - Il

Sequential Circuit Design

Steps in the design process for sequential circuits
State Diagrams and State Tables
Examples

Steps in Design of a Sequential Circuit

1. Specification — A description of the sequential circuit. Should include a detailing
of the inputs, the outputs, and the operation. Possibly assumes that you have
knowledge of digital system basics.

2. Formulation: Generate a state diagram and/or a state table from the statement of the problem.
3. State Assignment: From a state table assign binary codes to the states.

4. Flip-flop Input Equation Generation: Select the type of flip-flop for the circuit

and generate the needed input for the required state transitions

5. Output Equation Generation: Derive output logic equations for generation of

the output from the inputs and current state.

6. Optimization: Optimize the input and output equations. Today, CAD systems

are typically used for this in real systems.

7. Technology Mapping: Generate a logic diagram of the circuit using ANDs,

ORs, Inverters, and F/Fs.

8. Verification: Use a HDL to verify the design.

Sequential machines are typically classified as either a Mealy machine or a
Moore machine implementation.

Moore machine: The outputs of the circuit depend only upon the current state
of the circuit.

Mealy machine: The outputs of the circuit depend upon both the current state
of the circuit and the inputs.

An example to go through the steps

The specification: The circuit will have one input, X, and one output, Z. The output
Z will be 0 except when the input sequence 1101 are the last 4 inputs received on
X.In that case it willbea 1

Generation of a state diagram

Create states and meaning for them.

State A —the last input was a 0 and previous inputs unknown. Can also be

the reset state. State B —the last input was a 1 and the previous input was a

0. The start of a new sequence possibly.

Capture this in a state diagram
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0/0

1/0

Ul ‘Capture this in a state diagram

Circles represent the states
Lines and arcs represent the transition between states.
Thé notation Input/output on the line or arc specifies the input that causes this

transition and the output for this change of state.
Add a state C — Have detected the input sequence 11 which is the start of the sequence

0/0

") Add a state D
State D — have detected the 3" input in the start of a sequence, a 0, now having
110.From State D, if the next input is a 1 the sequence has been

detected and a 1 is output.

0/0

") The previous diagram was incomplete.

") In each state the next input could be a 0 or a 1. This must be included
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The state table

This can be done directly from the state diagram

Next State Output
Prresent State | X =0 | X=1 X=0, X=1
A A B 0 0
B A C 0 0
C D & 0 0
D A B 0 1

Now need to do a state assignment

Will select a gray encoding
For this state A will be encoded 00, state B 01, state C 11 and state D 10

Next State Output
Prresent State | X=0 | X=1 | X=0 | X=I

00 00 01 0 0
01 00 [ ) 0
11 10 [ 0 0
10 00 01 0 I

Flip-flop input equations
Generate the equations for the flip-flop
inputs Generate the Do equation

QHQI
X N\00__01 11 10

¢ ['\ Dy =QpQy + XQ

[Ta®

Generate the D1 equation
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The output equation

QuQ

(0

o1 11 10

]

——

LD

D =X

DIGITAL ELECTRONICS

The next step is to generate the equation for the output Z and what is needed to

generate it.

Create a K-map from the truth table.

QQ

Z=XQ)Q,

X N\00 01 11 10
0
| 1
Now map to a circuit
The circuit has 2 D type F/Fs
D SET Q
*— —b5 0
cutv
X . D SET Q _J
> 1
CLR U-—L_LI
Clk
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Shift registers:

In digital circuits, a shift register is a cascade of flip-flops sharing the same clock, in
which the output of each flip-flop is connected to the "data" input of the next flip-flop in the
chain, resulting in a circuit that shifts by one position the "bit array" stored in it, shifting in
the data present at its input and shifting out the last bit in the array, at each transition of
the clock input. More generally, a shift register may be multidimensional, such that its
"data in" and stage outputs are themselves bit arrays: this is implemented simply by
running several shift registers of the same bit-length in parallel.

Shift registers can have both parallel and serial inputs and outputs. These are often configured
as serial-in, parallel-out (SIPO) or as parallel-in, serial-out (PISO). There are also types that have
both serial and parallel input and types with serial and parallel output. There are also bi-
directional shift registers which allow shifting in both directions: L—R or R—L. The serial input
and last output of a shift register can also be connected to create a circular shift register

Shift registers are a type of logic circuits closely related to counters. They are
basically for the storage and transfer of digital data.
Buffer register:
The buffer register is the simple set of registers. It is simply stores the binary word.
The buffer may be controlled buffer. Most of the buffer registers used D Flip-flops.

P———

o

Clock

Figure: logic diagram of 4-bit buffer register

The figure shows a 4-bit buffer register. The binary word to be stored is applied to
the data terminals. On the application of clock pulse, the output word becomes the
same as the word applied at the terminals. i.e., the input word is loaded into the
register by the application of clock pulse.

When the positive clock edge arrives, the stored word becomes:
Q40Q30Q2Q1=X4X3X2X1

Q=X

Controlled buffer register:

If goes LOW, all the FFs are RESET and the output becomes, Q=0000.

When is HIGH, the register is ready for action. LOAD is the control input.

When LOAD is HIGH, the data bits X can reach the D inputs of FF‘s.

Q40Q3Q2Q1=XaX3X2X1

Q=X

When load is low, the X bits cannot reach the FF‘s.
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Data transmission in shift registers:

datain __,| |, data out

clock !

stage A | stage B stageC | stage D

Serial-in, serial-out shift register with 4-stages

Da Dg Dc Dp

datain __,/ » data out

clock |
mode N

stage A stage B stage C stage D

! ! ' !

Q,\ QB QC QD

Parallel-in, parallel-out shift register with 4-stages

data in __J |, dataout

clock __}

stage A stage B stage C stage D

' ! ' '

Q. Qs Q Q

Serial-in, parallel-out shift register with 4-stages

Dy Dg Dc Dp

! ! | !

data in __J .. data out

clock ]

stage A stage B stage C stage D

Parallel-in, serial-out shift register with 4-stages

A number of ff‘s connected together such that data may be shifted into and shifted
out of them is called shift register. data may be shifted into or out of the register in
serial form or in parallel form. There are four basic types of shift registers.

1. Serial in, serial out, shift right, shift registers

2. Serial in, serial out, shift left, shift registers

3. Parallel in, serial out shift registers

4. Parallel in, parallel out shift registers

| MREC(A)



DIGITAL ELECTRONICS

Serial IN, serial OUT, shift right, shift left register:

The logic diagram of 4-bit serial in serial out, right shift register with four stages.
The register can store four bits of data. Serial data is applied at the input D of the
first FF. the Q output of the first FF is connected to the D input of another FF. the
data is outputted from the Q terminal of the last FF.

1 1
0 M0 jmo
Serial )
Dena» p aoll.p allddp aollelp ol o
aain | cpa FFB FFC FFD Serial
Data out
CLK CLK CLK CLK
Clock _[7]

When serial data is transferred into a register, each new bit is clocked into the first
FF at the positive going edge of each clock pulse. The bit that was previously
stored by the first FF is transferred to the second FF. the bit that was stored by the
Second FF is transferred to the third FF.

Serial-in, parallel-out, shift register:

OB

T4ef0 P e w

cear | | ‘ T T I

Clock | _I'L

Senal

Datain =
AL | »

. \;
8

In this type of register, the data bits are entered into the register serially, but the
data stored in the register is shifted out in parallel form.

Once the data bits are stored, each bit appears on its respective output line
and all bits are available simultaneously, rather than on a bit-by-bit basis with the
serial output. The serial-in, parallel out, shift register can be used as serial-in,
serial out, shift register if the output is taken from the Q terminal of the last FF.
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Parallel-in, serial-out, shift register:
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For a parallel-in, serial out, shift register, the data bits are entered simultaneously into their
respective stages on parallel lines, rather than on a bit-by-bit basis on one line as with serial
data bits are transferred out of the register serially. On a bit-by-bit basis over a single line.
There are four data lines A,B,C,D through which the data is entered into the
register in parallel form. The signal shift/ load allows the data to be entered in
parallel form into the register and the data is shifted out serially from terminalQ4

Parallel-in, parallel-out, shift register
Parallel oulpuls

a e -
o 4 e e\ - h

— ] t bj
_I'D o 1D alJ D oLt o S)

$

CLX CL CLK CiK

Paraliet inpuis

In a parallel-in, parallel-out shift register, the data is entered into the register in parallel
form, and also the data is taken out of the register in parallel form. Data is applied to the D
input terminals of the FF‘s. When a clock pulse is applied, at the positive going edge of the
pulse, the D inputs are shifted into the Q outputs of the FFs. The register now stores the
data. The stored data is available instantaneously for shifting out in parallel form.
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Bidirectional shift register:

A bidirectional shift register is one which the data bits can be shifted from left
to right or from right to left. A fig shows the logic diagram of a 4-bit serial-in, serial out,
bidirectional shift register. Right/left is the mode signal, when right /left is a 1, the logic
circuit works as a shift-register.the bidirectional operation is achieved by using the
mode signal and two NAND gates and one OR gate for each stage.

A HIGH on the right/left control input enables the AND gates G1, G2, G3 and G4
and disables the AND gates G5,G6,G7 and G8, and the state of Q output of each FF is
passed through the gate to the D input of the following FF. when a clock pulse occurs,
the data bits are then effectively shifted one place to the right. A LOW on the right/left
control inputs enables the AND gates G5, G6, G7 and G8 and disables the And gates
Gl, G2, G3 and G4 and the Q output of each FF is passed to the D input of the
preceding FF. when a clock pulse occurs, the data bits are then effectively shifted one
place to the left. Hence, the circuit works as a bidirectional shift register

LEFT/RIGHT

T

MSB L Output data

CLEAR T T T I

CLK

Input data

Figure: logic diagram of a 4-bit bidirectional shift register
Universal shift register:

A register is capable of shifting in one direction only is a unidirectional shift register.
One that can shift both directions is a bidirectional shift register. If the register has
both shifts and parallel load capabilities, it is referred to as a universal shift registers.
Universal shift register is a bidirectional register, whose input can be either in serial
form or in parallel form and whose output also can be in serial form or | parallel form.
The most general shift register has the following capabilities.

1. A clear control to clear the register to O

2. A clock input to synchronize the operations

3. A shift-right control to enable the shift-right operation and serial input and
output lines associated with the shift-right

| MREC(A)



DIGITAL ELECTRONICS

4. A shift-left control to enable the shift-left operation and serial input and
output lines associated with the shift-left

5. A parallel loads control to enable a parallel transfer and the n input lines

associated with the parallel transfer

N parallel output lines

7. A control state that leaves the information in the register unchanged in
the presence of the clock.

o

A universal shift register can be realized using multiplexers. The below fig shows the logic
diagram of a 4-bit universal shift register that has all capabilities. It consists of 4 D flip-flops and
four multiplexers. The four multiplexers have two common selection inputs s1 and sO. Input 0 in
each multiplexer is selected when S1S0=00, input 1 is selected when S1S0=01 and input 2 is
selected when S1S0=10 and input 4 is selected when S1S0=11. The selection inputs control the
mode of operation of the register according to the functions entries. When S1S0=0, the present
value of the register is applied to the D inputs of flip-flops. The condition forms a path from the
output of each flip-flop into the input of the same flip-flop. The next clock edge transfers into
each flip-flop the binary value it held previously, and no change of state occurs. When S1S0=01,
terminal 1 of the multiplexer inputs have a path to the D inputs of the flip-flop. This causes a
shift-right operation, with serial input transferred into flip-flopA4. When S1S0=10, a shift left
operation results with the other serial input going into flip-flop Al. Finally when S1S0=11, the
binary information on the parallel input lines is transferred into the register simultaneously
during the next clock cycle

Parallel outputs

A,‘ A3 A2 A1
Clear —¢9 - rl ¥ fﬂ " I-'O -
A A A o D
CLK - +
St ——  4x1 4x1 4x1 4x1
So MUX MUX MUX MUX
3210 3210 3210 3210
1 I 1 I 1 i il
Serial
input_for inseur:?clar
shift-right I A 12 1} P
shift-left

4-bit universal shift register

Figure: logic diagram 4-bit universal shift register
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Function table for theregister

mode control

SO |S1 register operation

0 0 No change
0 [ Shift Right
1 0 [Shift left

1 1 |Parallel load

Counters:

Counter is a device which stores (and sometimes displays) the number of times
particular event or process has occurred, often in relationship to a clock signal. A
Digital counter is a set of flip flops whose state change in response to pulses
applied at the input to the counter. Counters may be asynchronous counters or
synchronous counters. Asynchronous counters are also called ripple counters

In electronics counters can be implemented quite easily using register-type
circuits such as the flip-flops and a wide variety of classifications exist:

Asynchronous (ripple) counter — changing state bits are used as clocks to
subsequent state flip-flops

Synchronous counter — all state bits change under control of a

singleclock Decade counter — counts through ten states per stage

Up/down counter — counts both up and down, under command of a control input Ring
counter — formed by a shift register with feedback connection in aring

Johnson counter — a twisted ring counter
Cascaded counter
Modulus counter.

Each is useful for different applications. Usually, counter circuits are digital in nature, and
count in natural binary Many types of counter circuits are available as digital building
blocks, for example a number of chips in the 4000 series implement different counters.

Occasionally there are advantages to using a counting sequence other than the
natural binary sequence such as the binary coded decimal counter, a linear feed-
back shift register counter, or a gray-code counter.

Counters are useful for digital clocks and timers, and in oven timers, VCR clocks, etc.
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Asynchronous counters:

An asynchronous (ripple) counter is a single JK-type flip-flop, with its J (data) input fed from
its own inverted output. This circuit can store one bit, and hence can count from zero to one before
it overflows (starts over from 0). This counter will increment once for every clock cycle and takes
two clock cycles to overflow, so every cycle it will alternate between a transition from 0 to 1 and a
transition from 1 to 0. Notice that this creates a new clock with a 50% duty cycle at exactly half the
frequency of the input clock. If this output is then used as the clock signal for a similarly arranged D
flip-flop (remembering to invert the output to the input), one will get another 1 bit counter that counts
half as fast. Putting them together yields a two-bit counter:

Two-bit ripple up-counter using negative edge triggered flip flop:

Two bit ripple counter used two flip-flops. There are four possible states
from 2 — bit up-counting l.e. 00, 01, 10 and 11.

The counter is initially assumed to be at a state 00 where the outputs of the
tow flip-flops are noted as Q1Qo. Where Qi1 forms the MSB and Qo forms the LSB.

For the negative edge of the first clock pulse, output of the first flip-flop FFi1 toggles its
state. Thus Q1 remains at 0 and Qo toggles to 1 and the counter state are now read as 01.

During the next negative edge of the input clock pulse FFi1toggles and Qo = 0. The output
QO being a clock signal for the second flip-flop FF2 and the present transition acts as a negative
edge for FF2 thus toggles its state Q1 = 1. The counter state is now read as 10.

For the next negative edge of the input clock to FF1 output QO toggles to 1.
But this transition from 0 to 1 being a positive edge for FF2 output Qi1 remains at 1.
The counter state is now read as 11.

For the next negative edge of the input clock, Qo toggles to 0. This transition
from 1 to O acts as a negative edge clock for FF2 and its output Q1 toggles to O.
Thus the starting state 00 is attained. Figure shown below

l_’s’{l
HIGH HIGH
JSEYQ'—'O JSFQ—’:H
CLK —t+—o> o>
K_. O i 0
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5 1 2 3 4 5
cexo | Lt L4 L4 L1
1
Qg o (B 1 a) 1
1
Qy o O o | 1 1|

Two-bit ripple down-counter using negative edge triggered flip flop:

HIGH

CLOCK CLK J CLK

‘ | — P ———
Q1 o
-
Q2 0
0 1 2 3 4 5 6 7 0
A 2-bit down-counter counts in the order 0,3,2,1,0,1....... ,i.e, 00,11,10,01,00,11 .....,etc. the

above fig. shows ripple down counter, using negative edge triggered J-K FFs and
its timing diagram.

For down counting, Q1‘ of FF1 is connected to the clock of Ff2. Let initially all the
FF1 toggles, so, Q1 goes from a0Oto aland Q1‘goes froma1toal0.
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The negative-going signal at Q1‘ is applied to the clock input of FF2, toggles Ff2
and, therefore, Q2 goes from a 0 to a 1.so0, after one clock pulse Q2=1 and Q1=1,
l.e., the state of the counter is 11.

At the negative-going edge of the second clock pulse, Q1 changes fromaltoa0
and Q1l‘froma0Otoa1.

This positive-going signal at Q1* does not affect FF2 and, therefore, Q2 remains at a 1.
Hence , the state of the counter after second clock pulseis 10

At the negative going edge of the third clock pulse, FF1 toggles. So Q1, goes fromaOtoal
and Q1‘ from 1 to 0. This negative going signal at Q1‘ toggles FF2 and, so, Q2 changes from 1
to 0, hence, the state of the counter after the third clock pulse is 01.

At the negative going edge of the fourth clock pulse, FF1 toggles. So Q1, goesfromaltoaO0
and Q1‘ from 0 to 1. . This positive going signal at Q1‘ does not affect FF2 and, so, Q2 remains
at 0, hence, the state of the counter after the fourth clock pulse is 00.

Two-bit ripple up-down counter using negative edge triggered flip flop:

Up/Down T { ~N

O : / % O

Figure: asynchronous 2-bit ripple up-down counter using negative edge triggered flip flop:

As the name indicates an up-down counter is a counter which can count both in upward and
downward directions. An up-down counter is also called a forward/backward counter or a
bidirectional counter. So, a control signal or a mode signal M is required to choose the direction of
count. When M=1 for up counting, Q1 is transmitted to clock of FF2 and when M=0 for down
counting, Q1‘is transmitted to clock of FF2. This is achieved by using two AND gates and one OR
gates. The external clock signal is applied to FF1.

Clock signal to FF2= (Q1.Up)+(Q1‘. Down)= Q1m+Q1‘M*

Design of Asynchronous counters:

To design a asynchronous counter, first we write the sequence , then tabulate
the values of reset signal R for various states of the counter and obtain the
minimal expression for R and R‘ using K-Map or any other method. Provide a
feedback such that R and R* resets all the FF‘s after the desired count
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Design of a Mod-6 asynchronous counter using T FFs:

A mod-6 counter has six stable states 000, 001, 010, 011, 100, and 101. When the sixth clock
pulse is applied, the counter temporarily goes to 110 state, but immediately resets to 000 because of
the feedback provided. it is —divide by-6-counterll, in the sense that it divides the input clock
frequency by 6.it requires three FFs, because the smallest value of n satisfying the conditionNs2" is
n=3; three FFs can have 8 possible states, out of which only six are utilized and the remaining two
states 110and 111, are invalid. If initially the counter is in 000 state, then after the sixth clock pulse, it
goes to 001, after the second clock pulse, it goes to 010, and so on.

R

| =

CLK —Jp> FF1 FE2 |
ar D> i N FF3
CLR __ 2 —
CLR R

After sixth clock pulse it goes to 000. For the design, write the truth table with present
state outputs Q3, Q2 and Q1 as the variables, and reset R as the output and obtain an
expression for R in terms of Q3, Q2, and Qlthat decides the feedback into be provided.
From the truth table, R=Q3Q2. For active-low Reset, R‘ is used. The reset pulse is of very
short duration, of the order of nanoseconds and it is equal to the propagation delay time of
the NAND gate used. The expression for R can also be determined as follows.

R=0 for 000 to 101, R=1 for 110, and R=X=for111
Therefore,
R=0Q30Q2Q1'+Q3Q2Q1=Q3Q2

The logic diagram and timing diagram of Mod-6 counter is shown in the above fig.

The truth table is as shown in below.
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After States
ulses Q3 02 Q1 R
0 0 0 O 0
il 0 0 1 0
P 0 1 0 0
3 0 1 1 0
A 1 0 O 0
o) 1 0 1 0
6 1 1¢ 0 1
0 0 O 0
7 0 0 O 0

Design of a mod-10 asynchronous counter using T-flip-flops:
A mod-10 counter is a decade counter. It also called a BCD counter or a divide-by-10

counter. It requires four flip-flops (condition 10 2" is n=4). So, there are 16 possible
states, out of which ten are valid and remaining six are invalid. The counter has ten stable
state, 0000 through 1001, i.e., it counts from 0 to 9. The initial state is 0000 and after nine
clock pulses it goes to 1001. When the tenth clock pulse is applied, the counter goes to
state 1010 temporarily, but because of the feedback provided, it resets to initial state 0000.
So, there will be a glitch in the waveform of Q2. The state 1010 is a temporary state for
which the reset signal R=1, R=0 for 0000 to 1001, and R=C for 1011 to 1111.

| Qi1
T1

CLK —

>

I
3
Lo, %
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FF3

Q3’

—{

1
\—»13 Q4

b

Q4

[ CLR

The count table and the K-Map for reset are shown in fig. from the K-Map R=Q4Q2.
So, feedback is provided from second and fourth FFs. For active —HIGH reset, Q4Q2 is
applied to the clear terminal. For active-LOW reset 4 2 is connected isof all Flip=flops.
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After Count
ulses 4 3 2 1
5 SR
Qaq3z N\ 00011110 1 0O 0 0 1
00 2 0O 0 1 0O
fil 0O 1 0 O
10 X X111 5 0 0 0 1
6 0O 1 1 o0
7 o 1 1 1
8 1 0 0 O
¢ 0o 1 o0 1
10 0O 0 0 O

Synchronous counters:

Asynchronous counters are serial counters. They are slow because each FF can change state
only if all the preceding FFs have changed their state. if the clock frequency is very high, the
asynchronous counter may skip some of the states. This problem is overcome in synchronous
counters or parallel counters. Synchronous counters are counters in which all the flip flops are
triggered simultaneously by the clock pulses Synchronous counters have a common clock pulse

applied simultaneously to allfiléps.] A 2-Bit Synchronous Binary Counter

HIGH
FFO FF1

0
w et o ax L[] [s] Jdl

|\>’€ >’r o ’7 -

Design of synchronous counters:

For a systematic design of synchronous counters. The following procedure is used.

Step 1:State Diagram: draw the state diagram showing all the possible states state
diagram which also be called nth transition diagrams, is a graphical means of
depicting the sequence of states through which the counter progresses.

Step2: number of flip-flops: based on the description of the problem, determine the
required number n of the flip-flops- the smallest value of n is such that the number

of states N<2"--- and the desired counting sequence.

Step3: choice of flip-flops excitation table: select the type of flip-flop to be used
and write the excitation table. An excitation table is a table that lists the present
state (ps) , the next state(ns) and required excitations.
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Step4: minimal expressions for excitations: obtain the minimal expressions for the
excitations of the FF using K-maps drawn for the excitation of the flip-flops in

terms of the present states and inputs.

Step5: logic diagram: draw a logic diagram based on the minimal expressions

Design of a synchronous 3-bit up-down counter using JK flip-flops:

Stepl: determine the number of flip-flops required. A 3-bit counter requires three FFs. It has 8
states (000,001,010,011,101,110,111) and all the states are valid. Hence no don‘t cares. For
selecting up and down modes, a control or mode signal M is required. When the mode signal
M=1 and counts down when M=0. The clock signal is applied to all the FFs simultaneously.

Step2: draw the state diagrams: the state diagram of the 3-bit up-down counter is drawn as

Step3: select the type of flip flop and draw the excitation table: JK flip-flops are selected and
the excitation table of a 3-bit up-down counter using JK flip-flops is drawn as shown in fig.

PS mode NS required excitations

Q3 2 Q1L M Q3 Q2 |Q1 pP3 K3 P2 K2 (Jl1 K1
0 0 0 0 ik 1 1 1 X 1 X 1 X
0 0 0 1 0 0 1 0 X 0 X 1 X
0 0 1 0 0 0 0 0 X 0 K X [
0 0 1 1 0 1 0 0 X 1 X X 1
0 1 0 0 0 0 1 0 X X 1 1 X
0 1 0 1 0 1 1 0 X X 0 1 X
0 1 1 0 0 1 0 0 X X 0 X 1
0 1 1 1 il 0 0 1 X x 1 X [
1 0 0 0 0 1 1 X 1 1 X 1 X
1 0 0 1 ik 0 1 X 0 0 X 1 X
1 0 1 0 ik 0 0 X 0 0 X X 1
1 0 1 1 ik 1 0 X 0 1 X X 1
1 1 0 0 il 0 1 X 0 x 1 1 X
1 1 0 1 ik 1 1 X 0 X 0 1 X
1 1 1 0 il 1 0 X 0 x 0 X [
1 1 1 1 0 0 0 X 1 X 1 X 1

Step4: obtain the minimal expressions: From the excitation table we can conclude that J1=1 and
K1=1, because all the entries for J1and K1 are either X or 1. The K-maps for J3, K3,J2 and K2 based
on the excitation table and the minimal expression obtained from them are shown in fig.
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00 01 11 10

Q30Q2\ , | QIM
>\it_l
1]
X X pd X
K | X XX
|

Step5: draw the logic diagram: a logic diagram using those minimal expressions
can be drawn as shown in fig.

Design of a synchronous modulo-6 gray cod counter:

Step 1: the number of flip-flops: we know that the counting sequence for a modulo-
6 gray code counter is 000, 001, 011, 010, 110, and 111. It requires n=3FFs (NSZ”,

i.e., 6523). 3 FFs can have 8 states. So the remaining two states 101 and 100 are
invalid. The entries for excitation corresponding to invalid states are don‘t cares.

Step2: the state diagram: the state diagram of the mod-6 gray code converter is

drawn as shown in fig.
GO —E

v

@@
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Step3: type of flip-flop and the excitation table: T flip-flops are selected and the excitation
table of the mod-6 gray code counter using T-flip-flops is written as shown in fig.

required

PS NS excitations
Q3 Q2 Q1 Q3 2 |1 T3 T2 |1
0 0 0 0 0 1 0 0 1
0 0 il 0 1 1 0 1 0
0 1 il 0 1 0 0 0 1
0 1 0 1 1 0 1 0 0
1 1 0 1 1 1 0 0 1
1 1 1 0 0 0 1 1 1

Step4: The minimal expressions: the K-maps for excitations of FFs T3,T2,and T1 in
terms of outputs of FFs Q3,Q2, and Q1, their minimization and the minimal
expressions for excitations obtained from them are shown if fig

BC BC BC BC BC BC BC BC
oo oo

o1 11 10 o1 11 10
A o 1 1 > 1 A o > > 5 S
o a & 2 o a & 2
~ 1 x x< > x A 1 1 1 > 1
1 s 7 3 1 s 7 3
(@) Map for Ja (5) Map for Ka
Ja =1 Ka = 1
BC BC BC BC BC BC BC BC
oo o1 11 10 oo o1 11 10
A o o o > > ~ o > > > o
o 4 =) 2 o 4 =] 2
A1 1 o > > A1 =< > ¢ 1
1 s 7 3 1 s 7 3
(c) Map for Ja (a) Map for Kg
da = { & Kg = A
BC BC BC BC BC BC BC BC
0o o1 11 10 oo o1 1 10
A o o x< > o A o b 3 o =< <
o & 4 K=3 2 : Lo b = S| =2
A1 o > > 1 A1 > 1 > ><
1 s 7 3 1 s 7 3
(&) Map for Jo (H Map for Ko
Jo = AB Ke = A

Step5: the logic diagram: the logic diagram based on those minimal expressions is
drawn as shown in fig.

LK

| MREC(A)



DIGITAL ELECTRONICS

Design of a synchronous BCD Up-Down counter using FFs:

Stepl: the number of flip-flops: a BCD counter is a mod-10 counter has 10 states

(0000 through 1001) and so it requires n=4FFs(N52n,, i.e., 10524). 4 FFS can have
16 states. So out of 16 states, six states (1010 through 1111) are invalid. For
selecting up and down mode, a control or mode signal M is required. , it counts up
when M=1 and counts down when M=0. The clock signal is applied to all FFs.

Step2: the state diagram: The state diagram of the mod-10 up-down counter is
drawn as shown in fig.

Step3: types of flip-flops and excitation table: T flip-flops are selected and the excitation
table of the modulo-10 up down counter using T flip-flops is drawn as shown in fig.

The remaining minterms are don‘t cares(> d(20,21,22,23,24,25,26,37,28,29,30,31)) from
the excitation table we can see that T1=1 and the expression for T4,T3,T2 are asfollows.
T4=>m(0,15,16,19)+d(20,21,22,23,24,25,26,27,28,29,30,31)
T3=ym(7,15,16,8)+d(20,21,22,23,24,25,26,27,28,29,30,31)
T2=>m(3,4,7,8,11,12,15,16)+d(20,21,22,23,24,25,26,27,28,29,30,31)

PS NS
mode required excitations

Q4 03 Q2 Q1 M Q4 03 ®2 Q1L T4 T3 T2 [T1
0 0 0 0 D 1 0 ( il 1 0 il
0 0 0 0 il 0 O ( il 0 0 il
0 0 0 1 D 0 O ( 0 0 0 il
0 0 0 1 il 0 O 1 0 0 0 1 il
0 0 1 0 D 0 O ( il 0 0 1 il
0 0 1 0 il 0 O 1 il 0 0 il
0 0 1 1 D 0 O 1 0 0 0 il
0 0 1 1 1 0 1 ( 0 0 1 1 il
0 1 0 0 D 0 O 1 il 0 1 1 il
0 1 0 0 il 0 1 ( il 0 0 il
0 1 0 1 D 0 1 ( 0 0 0 il
0 1 0 1 i 0 1 1 0 0 0 1 il
0 1 1 0 D 0 1 ( il 0 0 1 il
0 1 1 0 i 0 1 1 il 0 0 [l il
0 1 1 1 0 0 1 1 0 0 0 il
0 1 1 1 1 1 0 ( 0 1 1 1 il
1 0 0 0 0 0O 1 1 il 1 1 1 il
1 0 0 0 il 1 0 ( il 0 0 il
1 0 0 1 D 1 0 ( 0 0 0 il
1 0 0 1 il 0 O ( 0 1 0 il
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Step4: The minimal expression: since there are 4 state variables and a mode signal, we
require 5 variable kmaps. 20 conditions of Q4Q3Q2Q1M are valid and the remaining 12
combinations are invalid. So the entries for excitations corresponding to those invalid
combinations are don‘t cares. Minimizing K-maps for T2 we get

T 2= Q4Q1‘M+Q4‘Q1M+Q2Q1‘M+Q3Q1 ‘M

DIGITAL ELECTRONICS

Stepb5: the logic diagram: the logic diagram based on the above equation is shown in fig.

oL M

Qg4 Q1M 3
Qg G1M
T oLV

Qi1

Q1’

Qs 02
e @1

QL M

M
—1
—

-5 |Qsazalm' +
- ™ Q3

— FF3

Q3’

Shift register counters:

One of the applications of shift register is that they can be arranged to form
several types of counters. The most widely used shift register counter is ring

counter as well as the twisted ring counter.

Ring counter: this is the simplest shift register counter. The basic ring counter using D
flip-flops is shown in fig. the realization of this counter using JK FFs. The Q output of

—1 T4

Q4

each stage is connected to the D flip-flop connected back to the ring counter.

CLK

D1 Q1
FF1
Q1

D2
FF2

Q2'

N Q3

FF3
Q3'

Only a single 1 is in the register and is made to circulate around the register as long as clock
pulses are applied. Initially the first FF is present to a 1. So, the initial state is 1000, i.e., Q1=1,
Q2=0,Q3=0,Q4=0. After each clock pulse, the contents of the register are shifted to the right by
one bit and Q4 is shifted back to Q1. The sequence repeats after four clock pulses. The number

D4
FF4

04

QF

FIGURE: logic diagram of 4-bit ring counter using D flip-flops
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of distinct states in the ring counter, i.e., the mod of the ring counter is equal to number of
FFs used in the counter. An n-bit ring counter can count only n bits, where as n-bit ripple
counter can count 2" bits. So, the ring counter is uneconomical compared to a ripple

counter but has advantage of requiring no decoder, since we can read the count by simply
noting which FF is set. Since it is entirely a synchronous operation and requires no gates
external FFs, it has the further advantage of being very fast.

Timing diagram:

State 0 1 2 3 o
1 2 3 4 5
Shift L .
Pulses
Qa
1 0] 0 0] 1
Qg
0 1 0 o] 0
Q¢
0 0 1 0] (0]
Qp
0 0 0 1 0

(e

Figure: state diagram
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Twisted Ring counter (Johnson counter):

This counter is obtained from a serial-in, serial-out shift register by providing
feedback from the inverted output of the last FF to the D input of the first FF. the Q
output of each is connected to the D input of the next stage, but the Q‘ output of the
last stage is connected to the D input of the first stage, therefore, the name twisted
ring counter. This feedback arrangement produces a unique sequence of states.

The logic diagram of a 4-bit Johnson counter using D FF is shown in fig. the
realization of the same using J-K FFs is shown in fig.. The state diagram and the sequence
table are shown in figure. The timing diagram of a Johnson counter is shown in figure.

Let initially all the FFs be reset, i.e., the state of the counter be 0000. After
each clock pulse, the level of Q1 is shifted to Q2, the level of Q2to Q3, Q3 to Q4 and
the level of Q4‘to Q1 and the sequences given in fig.

Qa Qp Qc o
L J Qq J Qg J Qg J Qp—¢
Shift
Puses TP CLKA —J>CLKB —I4>CLK C —d>CLK D
— K Qa K Qg K Qc K Qp
o ! I ]

Figure: Johnson counter with JK flip-flops

1 2 3 4 65 6 7 8 1 2 3 4

Sae T L1 [3] [4] [5] [6] [7] (8| [o] fo] [11] fi
Shift

Pulse | | | | I | | | I | |

1 1 1 1 1 1 1 | I
Qo o1t 1 1 1 ]/0 0 0 0|1 1

T I I I I I |

1 | 1 I 1 1 1 1 1

1 1 1 1 1 1 T— L

1 1 1 1 1 ]
Q 0 0 0 O 1 1 1 1 0 0 0 Or

Figure: timing diagram
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State diagram:

after

clock
, % Q1 Q2 Q3 Q4 pulse

0000

g

w 4 .a

RPOOOORFrRRFRRFRPEFRO
OOOI—‘I—‘HHOOO
OOI—‘I—‘I—‘HOOOO
©CoOoO~NOOUITPWNEO

OOOOI—‘HHHOO

Excitation table
Synthesis of sequential circuits:
The synchronous or clocked sequential circuits are represented by two models.

1. Moore circuit: in this model, the output depends only on the present
state of the flip-flops

2. Meelay circuit: in this model, the output depends on both present
state of the flip-flop. And the inputs.

Sequential circuits are also called finite state machines (FSMs). This name is due to the fast
that the functional behavior of these circuits can be represented using a finite number of states.

State diagram: the state diagram or state graph is a pictorial representation of the relationships
between the present state, the input, the next state, and the output of a sequential circuit. The
state diagram is a pictorial representation of the behavior of a sequential circuit.

The state represented by a circle also called the node or vertex and the transition
between states is indicated by directed lines connecting circle. a directed line
connecting a circle with itself indicates that the next state is the same as the present
state. The binary number inside each circle identifies the state represented by the
circle. The direct lines are labeled with two binary numbers separated by a symbol.
The input value is applied during the present state is labeled after the symbol.
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PS X=0 X=1

._ @ i NS,0/P
FaaY \41 = on INPUT X

_ l(z 53 51 a a0 b0
" ‘—‘R\ } u b bl c0
e N PP c dOo c,1
w2l B d do0 al

Fig :a) state diagram (meelay circuit) fig: b) state table

In case of moore circuit ,the directed lines are labeled with only one binary number representing the
input that causes the state transition. The output is indicated with in the circle below the present

state, because the output depends only on the present state and not on the input.

]
N NS
0 {_;, 1 ) INPUT X
T PS  X=0 X=1 O/P
2 Z L) Oh a a b 0
B sme el b b c O
P
0 ! C d c 1
’ ) d a d O
-
Fig: a) state diagram (moore circuit) fig:b) state table

Serial binary adder:
Stepl: word statement of the problem: the block diagram of a serial binary adder is shown in fig. it is

a synchronous circuit with two input terminals designated Xland X2 which carry the two binary
numbers to be added and one output terminal Z which represents the sum. The inputs and outputs
consist of fixed-length sequences 0s and 1s.the output of the serial Zi at time tiis a function of the
inputs Xai(ti) and Xz(ti) at that time ti-1 and of carry which had been generated at ti-

1. The carry which represent the past history of the serial adder may be a 0 or 1. The
circuit has two states. If one state indicates that carry from the previous addition is a 0,
the other state indicates that the carry from the previous additionisa l
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SERIALADDER | » X2

Figure: block diagram of serial binary adder

Step2 and 3: state diagram and state table: let a designate the state of the serial adder
at ti if a carry 0 was generated at ti-1, and let b designate the state of the serial adder at
ti if carry 1 was generated at ti1 the state of the adder at that time when the present
inputs are applied is referred to as the present state(PS) and the state to which the
adder goes as aresult of the new carry value is referred to as next state(NS).

The behavior of serial adder may be described by the state diagram and state table.

PS NS,OP
00/0 11/0 01/0 X1 X2
1Y) 1 A : o 0 1 1
01/1 (" g 10/0 o 1 0 1
10/ X i 11/1 A A0 BOB,21 B0
! B A2l B0 B, Bl

Figures: serial adder state diagram and state table

If the machine is in state B, i.e., carry from the previous addition is a 1, inputs X1=0 and
X2=1 gives sum, 0 and carry 1. So the machine remains in state B and outputs a 0.
Inputs Xi=1 and X2=0 gives sum, 0 and carry 1. So the machine remains in state B and
outputs a 0. Inputs X1=1 and X2=1 gives sum, 1 and carry 0. So the machine remains in
state B and outputs a 1. Inputs X1=0 and X2=0 gives sum, 1 and carry 0. So the machine
goes to state A and outputs a 1. The state table also gives the same information.

Setp4: reduced standard from state table: the machine is already in this form. So
no need to do anything

Step5: state assignment and transition and output table:
The states, A=0 and B=1 have already been assigned. So, the transition and
output table is as shown.
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PS NS o/P
0O 0 1 10 0o 1 1
01 0 _10__ 1 0 1
00 0 0 10 1 1 1
1 01 1 11 00 1

STEPG6: choose type of FF and excitation table: to write table, select the memory
element the excitation table is as shown in fig.

PS I/P NS I/P-FF  O/IP
x1 X2 Y D Z

PR PP OOOOK
P OORREROO
RPORORFROPRO
PR R, ORFR OOO
PR R, OR OOO
RPOORORPELRO

Sequence detector:
Stepl: word statement of the problem: a sequence detector is a sequential
machine which produces an output 1 every time the desired sequence is detected
and an output O at all other times

Suppose we want to design a sequence detector to detect the sequence 1010
and say that overlapping is permitted i.e., for example, if the input sequence is
01101010 the corresponding output sequence is 00000101.

Step2 and 3: state diagram and state table: the state diagram and the state table of the
sequence detector. At the time t1, the machine is assumed to be in the initial state
designed arbitrarily as A. while in this state, the machine can receive first bit input, either a
Ooral. lftheinput bitis 0, the machine does not start the detection process because the
first bit in the desired sequence is a 1. If the input bit is a 1 the detection process starts.

PS NS,Z

X=0 X=1
A A0 B,0
B Co0 B,0
C A,0 D,0
D C1 B,0

Figure: state diagram and state table of sequence detector
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So, the machine goes to state B and outputs a 0. While in state B, the machinery may
receive 0 or 1 bit. If the bit is 0, the machine goes to the next state, say state c, because the
previous two bits are 10 which are a part of the valid sequence, and outputs O.. if the bit is
a 1, the two bits become 11 and this not a part of the valid sequence

Step4: reduced standard form state table: the machine is already in this form.
So no need to do anything.
Step5: state assignment and transition and output table: there are four states therefore
two states variables are required. Two state variables can have a maximum of four
states, so, all states are utilized and thus there are no invalid states. Hence, there are
no don‘t cares. Let a=00, B=01, C=10 and D=11 be the state assignment.

NS(Y1Y2) O/P(2)
PS(yly2 X=0 X=1 X=0  X=1
A=00 0 00 10 0
B=01 1 00 10 0
C=10 0 01 10 0
D=111 10 11 0

Step6: choose type of flip-flops and form the excitation table: select the D flip-
flops as memory elements and draw the excitation table.

INPUTS -
PS /P NS FFS o/P
yl Y2 X YL Y2 DL D2 Z
00 O 0 00 0 0
00 1 0 10 1 0
01 0 1 0 1 0 0
01 1 0 10 1 0
10 0 0 0 0 0 0
1 0 1 1 11 1 0
11 o0 1 01 0o 1
1 1 1 0 10 1_0

Step7: K-maps and minimal functions: based on the contents of the excitation table , draw the
k-map and simplify them to obtain the minimal expressions for D1 and D2 in terms of y1, y2 and
x as shown in fig. The expression for z (z=y1,y2) can be obtained directly from table

Step8: implementation: the logic diagram based on these minimal expressions
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Finite State Machine:

Finite state machine can be defined as a type of machine whose past histories can affect its
future behavior in a finite number of ways. To clarify, consider for example of binary full adder.
Its output depends on the present input and the carry generated from the previous input. It may
have a large number of previous input histories but they can be divided into two types: (i) Input

The most general model of a sequential circuit has inputs, outputs and internal states. A
sequential circuit is referred to as a finite state machine (FSM). A finite state machine is abstract
model that describes the synchronous sequential machine. The fig. shows the block diagram of a
finite state model. X1, X2,....., X, are inputs. Z1, Z2,....,Zm are outputs. Y1,Y2,....Yk are state
variables, and Y1,Y2,....Yk represent the next state.

Clock pulse

Capabilities and limitations of finite-state machine

Let a finite state machine have n states. Let a long sequence of input be given to the machine.
The machine will progress starting from its beginning state to the next states according to the
state transitions. However, after some time the input string may be longer than n, the number of
states. As there are only n states in the machine, it must come to a state it was previously been
in and from this phase if the input remains the same the machine will function in a periodically
repeating fashion. From here a conclusion that _for a n state machine the output will become
periodic after a number of clock pulses less than equal to n can be drawn. States are memory
elements. As for a finite state machine the number of states is finite, so finite number of
memory elements are required to design a finite state machine.

Limitations:

1. Periodic sequence and limitations of finite states: with n-state machines, we can
generate periodic sequences of n states are smaller than n states. For example, in a
6-state machine, we can have a maximum periodic sequence as 0,1,2,3,4,5,0,1....

2. No infinite sequence: consider an infinite sequence such that the output is 1
when and only when the number of inputs received so far is equal to P(P+1)/2
for P=1,2,3....,i.e., the desired input-output sequence has the following form:
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Input: X

X X X X XX XX XX XX XXX X XXX XXX
Output:1 01 0 01 00001000 O0100 000O01
Such an infinite sequence cannot be produced by a finite state machine.

3. Limited memory: the finite state machine has a limited memory and due to
limited memory it cannot produce certain outputs. Consider a binary multiplier
circuit for multiplying two arbitrarily large binary numbers. The memory is not
sufficient to store arbitrarily large partial products resulted duringmultiplication.

Finite state machines are two types. They differ in the way the output is generate they are:
1. Mealy type model: in this model, the output is a function of the present
state and the present input.

2. Moore type model: in this model, the output is a function of the present state only.

Mathematical representation of synchronous sequential machine:
The relation between the present state S(t), present input X(t), and next state
s(t+1) can be given as
S(t+1)= H{S(t),X(1)}
The value of output Z(t) can be given as
Z(t)= g{S(t),X(t)} for mealy model
Z(t)= G{S(t)} for Moore model
Because, in a mealy machine, the output depends on the present state and input,
where as in a Moore machine, the output depends only on the present state.

Comparison between the Moore machine and mealy machine:

Moore machine mealy machine

1. its output is a function of present [1.its outputis afunction of present state
state only Z(t)= g{S(t)} as well as present input Z(t)=g{S(t),X(t)}
2. input changes do not affect the 2. input changes may affect the output of
output the circuit

3. it requires more number of states 3. it requires less number of states for
for implementing same function implementing same function

Mealy model:

When the output of the sequential circuit depends on the both the present state of the flip-
flops and on the inputs, the sequential circuit is referred to as mealy circuit or mealy machine.
The fig. shows the logic diagram of the mealy model. Notice that the output depends up on the
present state as well as the present inputs. We can easily realize that changes in the input
during the clock pulse cannot affect the state of the flip-flop. They can affect the output of the
circuit. If the input variations are not synchronized with a clock, he derived output will also not
be synchronized with the clock and we get false output. The false outputs can be eliminated by
allowing input to change only at the active transition of the clock.
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D, Wft= ) —D ¥
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The behavior of a clocked sequential circuit can be described algebraically by
means of state equations. A state equation specifies the next state as a function of
the present state and inputs. The mealy model shown in fig. consists of two D flip-
flops, an input x and an output z. since the D input of a flip-flop determines the
value of the next state, the state equations for the model can be written as

Y1 (t+1)=ya(t)x (1) +y2(t)x(t)

Yo(t+1)= 1(t)x(t)

Fig: logic diagram of a mealy model

And the output equation is

Z(t)={ ya(t)+ya(t)} X‘(t)

Where y(t+1) is the next state of the flip-flop one clock edge later, x(t) is the present
input, and z(t) is the present output. If y1(t+1) are represented by y1(t) and y2(t) , in
more compact form, the equations are

Y1(t+1)=y1l=y1x+y2x

Y2(t+1)=y2=y1‘x

Z=(y1l+y2)x*

The stable table of the mealy model based on the above state equations and output
equation is shown in fig. the state diagram based on the state table is shown in fig.

0/0
. 1/0
PS NS oP 0 0/1 .
x=0 x=1 x=0 x=1
Y1 Y2 Y, Ya Y, Y, z z
0 0 0 o 0 1 0 0 1/0 1/0
0 1 0 0 1 1 1 0
1 0 0 0 1 0 1 0
1 1 0 0 1 0 1 0 Q °
(a) State table (b) State diagram

In general form, the mealy circuit can be represented with its block schematic as
shown in below fig.
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. > »« Output
- > Decoder
Inputs . Memory o —*
. Maxt : . . Qutputs
H State . elements | « :
» Decoder - N .

Moore model: when the output of the sequential circuit depends up only on the present state of

the flip-flop, the sequential circuit is referred as to as the Moore circuit or the Moore machine.
Notice that the output depend only on the present state. It does not depend upon the

input at all. The input is used only to determine the inputs of flip-flops. It is not used to

determine the output. The circuit shown has two T flip-flops, one input x, and one

output z. it can be described algebraically by two input equations an output equation.

T1=y2x
T2=x
Z=y1y2
; 1 L.
>
Vi pb— g Vo b—o
Cio

' of a T-flip-flop is Q(t+1)=TQ+T‘Q
The values for the next state can be derived from the state equations by
substituting T1 and T2 in the characteristic equation yielding

Ya(t+1)=Y1=(y2x) & =( 2 )y1+(y2x) 1
=yl 2+yl + 1y2x
= y2 (t+1)= x Ely2=x 2+ y2

The state table of the Moore model based on the above state equations and
output equation is shown in fig.
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=0 x=1

¥y Y2 | Yy Yo | Yy Y z

0 0 0 o 0 1 0

0 1 0 1 1 0 0

1 0 1 0 1 1 0

1 1 i 1 0 0 1
(a) State table

DIGITAL ELECTRONICS

(b) State diagram

In general form , the Moore circuit can be represented with its block
schematic as shown in below fig.

Inputs

Figure: moore circuit model:

Inputs

.

Figure: moore circuit model with an output decoder

Important definitions and theorems:
A). Finite state machine-definitions:

Consider the state diagram of a finite state machine shown in fig. it is five-state
machine with one input variable and one output variable.

—_— o
IO NS, >
= . hlllemory . Outputs
: Next state : Lyl :
decoder >
B —y .
—_— » > >
' A Memory | Output s
. Next « |elements| decoder | ° Outputs
! state ' . .
——— decoder [EEIRPN
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Successor: looking at the state diagram when present state is A and input is 1, the next state is
D. this condition is specified as D is the successor of A. similarly we can say that A is the 1
successor of B, and C,D is the 11 successor of B and C, C is the 00 successor of Aand D, D is
the 000 successor of AE, is the 10 successor of A or 0000 successor of A and so on.

Terminal state: looking at the state diagram , we observe that no such input
sequence exists which can take the sequential machine out of state E and thus
state E is said to be a terminal state.

Strongly-connected machine: in sequential machines many times certain subsets of states may not
be reachable from other subsets of states. Even if the machine does not contain any terminal state.
If for every pair of states si, sj, of a sequential machine there exists an input sequence which takes
the machine M from si to sj, then the sequential machine is said to be strongly connected.

B). state equivalence and machine minimization:

In realizing the logic diagram from a stat table or state diagram many times we
come across redundant states. Redundant states are states whose functions can
be accomplished by other states. The elimination of redundant states reduces the
total number of states of the machines which in turn results in reduction of the
number of flip-flops and logic gates, reducing the cost of the final circuit.

Two states are said to be equivalent. When two states are equivalent, one of them
can be removed without altering the input output relationship.

State equivalence theorem: it states that two states si, and s2 are equivalent if for
every possible input sequence applied. The machine goes to the same next state
and generates the same output. That is

If S1(t+1)= s2(t+1) and z1=z2, then si1=s2

C). distinguishable states and distinguishing sequences:

Two states sa, and sbv of a sequential machine are distinguishable, if and only if there
exists at least one finite input sequence which when applied to the sequential machine
causes different outputs sequences depending on weather sa or so is the initial state.

Consider states A and B in the state table, when input X=0, their outputs are 0
and 1 respectively and therefore, states A and B are called 1-distinguishabke. Now
consider states A and E . the output sequence is as follows.

X=0 A C,0-and E D, O ; owtputs are the same
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e

C—-»EO and D—» b,1 ; outputs are different

Here the outputs are different after 2-state transition and hence states A and E are 2-
distungishable. Again consider states A and C . the output sequence is as follows:

X=0 A—» C,0 andC—» E,O0; outputs are the same

C—-»EO and E — D,0; outputs are the
same E - D,0-and D B,1; outputs are

different

Here the outputs are different after 3- transition and hence states A and B are 3-
distuingshable. the concept of K- distuingshable leads directly to the definition of
K-equivalence. States that are not K-distinguishable are said to be K-equivalent.

Truth table for Distunigshable states:

PS NS,Z

X=0 X=1
A Co0 F,0
B D,1 F,0
C E,O B,0
D B.,1 E,O0
E D,0 B,0
F D,1 B,0

Merger Chart Methods:
Merger graphs:

The merger graph is a state reducing tool used to reduce states in the
incompletely specified machine. The merger graph is defined as follows.
1. Each state in the state table is represented by a vertex in the merger graph. So it
contains the same number of vertices as the state table contains states.
2. Each compatible state pair is indicated by an unbroken line draw between
the two state vertices
3. Every potentially compatible state pair with non-conflicting outputs but with
different next states is connected by a broken line. The implied states are
written in theline break between the two potentially compatible states.
4. If two states are incompatible no connecting line is drawn.

Consider a state table of an incompletely specified machine shown in fig. the
corresponding merger graph shown in fig.
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State table:

PS NS,Z

11 12 13 14
A E,1 B,1
B D,1 F.1
C F,1
D C1
E C,0 A0 F1
F D,0 Al B,0

DE

D o

a) Merger graph b) simplified merger graph

States A and B have non-conflicting outputs, but the successor under input l2are
compatible only if implied states D and E are compatible. So, draw a broken line from A to
B with DE written in between states A and C are compatible because the next states and
output entries of states A and C are not conflicting. Therefore, a line is drawn between
nodes A and C. states A and D have non-conflicting outputs but the successor under input
Isare B and C. hence join A and D by a broken line with BC entered In between.

Two states are said to be incompatible if no line is drawn between them. If implied
states are incompatible, they are crossed and the corresponding line is ignored. Like,
implied states D and E are incompatible, so states A and B are also incompatible. Next,
it is necessary to check whether the incompatibility of A and B does not invalidate any
other broken line. Observe that states E and F also become incompatible because the
implied pair AB is incompatible. The broken lines which remain in the graph after all
the implied pairs have been verified to be compatible are regarded as complete lines.
After checking all possibilities of incompatibility, the merger graph gives the
following seven compatible pairs.

(A,O)(A,D)(B,C)(B,D)(C,D)(B,E) (B, F)
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These compatible pairs are further checked for further compatibility. For example,
pairs (B,C)(B,D)(C,D) are compatible. So (B, C, D) is also compatible. Also pairs
(A,c)(A,D)(C,D) are compatible. So (A,C,D) is also compatible. . In this way the entire
set of compatibles of sequential machine can be generated from its compatible pairs.
To find the minimal set of compatibles for state reduction, it is useful to find what are called the
maximal compatibles. A set of compatibles state pairs is said to be maximal, if it is not
completely covered by any other set of compatible state pairs. The maximum compatible can
be found by looking at the merger graph for polygons which are not contained within any
higher order complete polygons. For example only triangles (A, C,D) and (B,C,D) are of higher
order. The set of maximal compatibles for this sequential machine given as
(A,C,D)(B,C,D)(B,E) (B, F)

Example:

Draw the merger graph and obtain the set of maximal compatibles for the
incompletely specified sequential machine whose state table is given in Table 7.24.

Table 7.24 Example 7.9: State table

PS NS, Z
ll lZ
A E,0 B,0
B F,0 A0
c E, - C,0
D F, 1 D, 0
E C 1 C.0
F D, - B, 0

mark X in the corresponding cell. For example, states B and C are incompatible because their
outputs are conflicting and hence the cell corresponding to them contains a cross mark x. Similarly
states B, E; D, E; E, F are incompatible. Hence put a X mark in the corresponding cells. On the
other hand, states A and B are compatible and hence the cell corresponding to them contains the
check mark v. Similarly, cells corresponding to states A, D; A \E;A,G; B, G; C,F; D, F; D, G are
also compatible. So a check mark is put in those cells also. The implied pairs or pairs corresponding
to the state pair are written within the cell as shown in Table 7.26. For example, states A and C are
compatible only when implied states E and F are compatible. Therefore, EF is written in the cell
corresponding to states A and C. States C and E are compatible only when implied states A and B,
and D and F are compatible. So AB and DF are written in the cell corresponding to states C and E.
In a similar way, the entirc merger table is written. Now it is necessary to check whether the
implied pairs are compatible or not by observing the merger table. The implied states are
incompatible if the corresponding cell contains a x. For example, implied pair E, F is incompatible
because cell EF contains a x. Similarly, implied pairs EF, AF are incompatible because EF contains
a x. It is indicated by a x.
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PS NS, Z
00 01 11 10
A E. 0 - - -
B - F 1 E, 1 Al
C F-..D - 'ﬁl{l Fll
D - - Al -
E - . B,0 D, 1
F C.0 C.1 - -
Figure: state table
B| /
c|pgf| x
D| v/ |AE| X
AB
Bl v | % |pp| *
FICE|CF| v | Vv | %
6| v|v|&|v|ap|ce

State Minimization:
Completely Specified Machines

Two states, si and sj of machine M are distinguishable if and only if there exists a
finite input sequence which when applied to M causes different output sequences
depending on whether M started in si or s;.

Such a sequence is called a distinguishing sequence for (si, sj).

If there exists a distinguishing sequence of length k for (si, sj), they are said
to be k-distinguishable.

EXAMPLE:

23
&
N

<

<

~

X=0
E 0
F, 0
= 6)
0]
¢ 0
B.O
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states A and B are 1-distinguishable, since a 1 input applied to A yields

an output 1, versus an output O from B.

states A and E are 3-distinguishable, since input sequence 111 applied to A
yields output 100, versus an output 101 from E.

States si and sj (si ~ sj ) are said to be equivalent iff no distinguishing

sequence exists for (si, Sj).

If si ~sjand sj ~ sk, then si ~ sk. So state equivalence is an equivalence

relation (i.e. it is a reflexive, symmetric and transitive relation).

An equivalence relation partitions the elements of a set into equivalence classes.
Property: If si ~sj, their corresponding X-successors, for all inputs X, are also equivalent.
Procedure: Group states of M so that two states are in the same

group iff they are equivalent (forms a partition of the states).

Completely Specified Machines

Pi : partition using distinguishing sequences of length i.

Partition: Distinguishing Sequence:
Po=(ABCDEF)
P1=(ACE)(BDF)
P2= (A C E)(B D)(F)
Ps= (A C)(E)(B D)(F)

X X X
i n
2 Er
x X
nn
=P
x

I

=

All states equivalent to each other form an equivalence class. These may
becombined into one state in the reduced (quotient) machine.
Start an initial partition of a single block. Iteratively refine this partition by

separating the 1-distinguishable states, 2-distinguishable states and so on.
To obtain Px+1, for each block Bi of Pk, create one block of states that not 1-
distinguishable within Bi, and create different blocks states that are 1-distinguishable

within Bi .

Theorem: The equivalence partition is unique.

Theorem: If two states, si and Sj, of machine M are distinguishable, then they
are (n-1)-distinguishable, where n is the number of states in M.

Definition: Two machines, M1 and Mz, are equivalent (M1 ~ Mz2) if, for every
state in M1 there is a corresponding equivalent state in M2 and vice versa.
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Theorem. For every machine M there is a minimum machine Mred ~ M. Mred iS
unique up to isomorphism.

Completely Specified Machines

* Reduced machine obtained from previous example:

NS, z

1!

D00 00a0

Ps= (A C)(E)(B D)(F)
=aPysd

S0P X

State Minimization of CSMs: Complexity
Algorithm DFA ~ DFAmin

Input: A finite automaton M =(Q, , ,qo, F)with no unreachable states.
Output: A minimum finite automaton M‘=(Q’, , g, F).
Method:

1.t :=2; Qo:={ undefined }; Q1:=F; Q2:= Q\F.

2.while thereis 0<i t,awith (Qi,a) Qj, forallj t
do (a) Choose such ani, a, and jt with (Qi,a) Qj

(b)Qt+1:={q Qi | (@,8) Qi }; Qi
= Qi\ Qt +1;

ti=t+1
end.

3. (* Denote [q ] the equivalence class of state q , and {Qi } the set of all
equivalence classes. *)

g‘o:=1[qo].
"([al, @) :=[(q.a)] forallqg Q,a

Standard implementation: O (kn 2), where n =|Q]and k = |
Modification of the body of the while loop:

1.Choose such an i, a, and choose j1,j2 t with j1 j2, (Qi,a) Qj1, and
(Qi,a) Qjp2

2.1t {g Qi| (g.2) Qi}l {a Qi| (g.2) Qiz}|
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then Qt+1:={q Qi | (q,a) Qir else Qt+1:={q }
Qi (g.a) Qi2 }fl;
Qi :=Qi\ Qt+1;
t:=t+1.
(i.e. put smallest setint+1)
Note: |Qt +1| 1/2|Qi|. Therefore, for all g Q, the name of the class which contains a
given state g changes at most log(n ) times.
Goal: Develop an implementation such that all computations can be assigned to transitions
containing a state for which the name of the corresponding class is changed.
Suitable data structures achieve an O (kn log n) implementation.
State Minimization:
Incompletely Specified Machines
Statement of the problem: given an incompletely specified machine M, find a
machine M’ such that:

—on any input sequence, M’ produces the same outputs as M, whenever M is
specified.

—there does not exist a machine M” with fewer states than M’ which has the same
property

Machine M:

Attempt to reduce this case to usual state minimization of completely specified machines.

Brute Force Method: Force the don‘t cares to all their possible values and choose
the smallest of the completely specified machines soobtained.

In this example, it means to state minimize two completely specified machines
obtained from M, by setting the don‘t care to either 0 and 1.

Suppose that the - is set to be a 0.
PS NS, z

x=0 =1

sl

States s1 and s2 are equivalent if s3 and s2 are equivalent, but s3 and s2 assert
different outputs under input 0, so s1 and s2 are not equivalent.

States s1 and s3 are not equivalent either.
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So this completely specified machine cannot be reduced further (3
states is the minimum).

Suppose that the - is set to be a 1.

States sl is incompatible with both s2 and s3.
States s3 and s2 are equivalent.
So number of states is reduced from 3 to 2.

Machine M”red :

NS, z

’

x=0 x=1

A Al A0
B B,0 A0

Can this always be done?
Machine M:

x=0 x=1
sl

s2

Machine M2 and Ms are formed by filling in the unspecified entry in M
with 0 and 1, respectively.
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Both machines M2 and Ms cannot be reduced.

Conclusion?: M cannot be minimized further!

But is it a correct conclusion?

Note: that we want to _merge* two states when, for any input sequence, they

generate the same output sequence, but only where both outputs are specified.
Definition: A set of states is compatible if they agree on the outputs where they are all specified.

x=0 x=1
sl

Machine M” :

s2
s3
In this case we have two compatible sets: A =(s1, s2) and B = (s3, s2). A reduced machine Mred

can be built as follows.
Machine Mred

A set of compatibles that cover all states is: (s3s6), (s4s6), (s1s6), (s4s5), (s2s5).
But (s3s6) requires (s4s6),

(s4s6) requires(s4sb), (s4s5) requires (s1sb),

(s1s6) requires (s1s2), (s1s2) requires (s3s6),

(s2s5) requires (s1s2).

So, this selection of compatibles requires too many other compatibles...

Another set of compatibles that covers all states is (s1s2s5), (s3s6),
(s4s5). But (s1s2s5) requires (s3s6) (s3s6) requires (s4s6)

(s4s6) requires (s4s5) (s4s5) requires (s1s5).

So must select also (s4s6) and (s1s5).

Selection of minimum set is a binate covering problem
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When a next state is unspecified, the future behavior of the machine is
unpredictable. This suggests the definition of admissible input sequence.
Definition. An input sequence is admissible, for a starting state of a machine if
no unspecified next state is encountered, except possibly at the final step.
Definition. State si of machine Mz is said to cover, or contain, state sj of Mz provided

1. every input sequence admissible to sjis also admissible to si, and

2. its application to both M1 and Mz (initially is si and sj, respectively) results

in identical output sequences whenever the outputs of M2 are specified.

Definition. Machine M1 is said to cover machine Mz if for every state sj in
Mz, there is a corresponding state si in M1 such that si covers s;.

Algorithmic State Machines:

The binary information stored in the digital system can be classified as either
data or control information.

The data information is manipulated by performing arithmetic, logic, shift and
other data processing tasks.

The control information provides the command signals that controls the various

operations on the data in order to accomplish the desired data processing task.

Design a digital system we have to design two subsystems data path
subsystem and control subsystem.

External —» Input data ——» —— Output data
inputs Control

logic Datapath

Commands

Status conditions

Interaction between control logic and datapath.

ASM CHART:

A special flow chart that has been developed specifically to define digital
hardware algorithms is called ASM chart.
A hardware algorithm is a step by step procedure to implement the desire task.

Difference b/n conventional flow chart and ASM chart:

conventional flow chart describes the sequence of procedural steps and decision
paths for an algorithm without concern for their time relationship

An ASM chart describes the sequence of events as well as the timing relationship
b/n the states of sequential controller and the events that occur while going from
one state to the next
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1. State box: A state of a clocked sequential circuit is represented by a rectangle called stare
box. It is equivalent to a node in the state diagram or a row in the state table. The name of the state

is written to the left of the box. The binary code assigned to the state is indicated outside on the top
right-side of the box. A list of unconditional outputs if any associated with the state are written
within the box. o .

2, Decision box:  The decision box or condition box is represented by a diamond-shaped symbol
with one input and two or more output paths. The output branches are true and false branches. The
decision box describes the effect of an input on the control subsystem. A Boolean variable or input

or expression written inside the diamond indicates a condition which is evaluated to determine
which branch to take.

ASM consists of
1. State box
2. Decision box
3. Conditional
box State box

State entry State entry
l YY «— State code l on
Register operation
State name— S or output A Z=1
State exit State exit
(a) General description (b) Specific example
Decision box
Entry Entry

Input
condition
X

(False) O 1 (True) (Faise) O 1 (True)

Exit path 1 Exit path 2 Exit path 1 Exit path 2
(a) General description (b) Specific example

Decision box,
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3. Conditional output box:  The conditional output box is represented by a rectangle with rounded
corners or by an oval with one input line and one output line. The outputs that depend on both the
state of the system and the inputs are indicated inside the box.

List of
conditional outputs

|

Exit
Conditional output box.
SALIENT FEATURES OF ASM CHARTS

1. An ASM chartdescribes the sequence of events as well as the timing relationship between
the states of a sequential controller and the events that occur while going from one state
to the next.

2. An ASM chart contains one or more interconnected ASM blocks.

3. Each ASM block contains exactly one state box together with the decision boxes and
conditional output boxes associated with that state.

4. Every block in an ASM chart specifies the operations that are to be performed during one
common clock pulse.

5. An ASM block has exactly one entrance path and one or more exit paths represented by
the structure of the decision boxes.

6. A path through an ASM block from entrance to exit is referred to as a link path.

7. The operations specified within the state and conditional output boxes in the block are
performed in the datapath subsystem.

8. Internal feedback within an ASM block is not permitted. Even so, following a decision
box or conditional output boxes, the machine may reenter the same state.

9. Each block in the ASM chart describes the state of the system during one clock pulse
interval. When a digital system enters the state associated with a given ASM block, the
outputs indicated within the state box become true. The conditions associated with the
decision boxes are evaluated to determine which path or paths to be followed to enter the
next ASM block.
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(a) Siate diagram ) ASAE ciuare
State diagram and ASMM chan for mod-6 countar

BINARY MULTIPLIER

L1 « 13,,... Multiplicand
1010 & 10, ... Multiplier
0000 «  Partial product |
1101 «  Partial product 2
0000 «  Partial product 3
1101 < Partial product 4
10000010 « 130, ... Product
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Data path subsystem for binary multiplier

Multiplicand
CeTlenl————T® ] &] She
n bit bus
&
3

e n-bit adder I e SO | Process

H

o :

|

JP— | S— RN e ]

T 2 P

(0] B slk] [ (ale]

re;izitter Multiplier

Datapath subsystem for binary multiplier.

Multiplication Operation Steps

1. Bit 0 of multiplier operand (Qo of Q register) is checked.

2. If bit 0 (Qg) is one then multiplicand and partial product are added and all bits
of C, A and Q registers are shifted to the right one bit, so that the C bit goes
into A,.1, Ap goes into Q,.;, and Qypis lost. If bit 0 (Qp) is 0, then no
addition is performed, only shift operation is carried out.

3. Steps 1 and 2 are repeated n times to get the desired result in the A and Q
registers.

witipliar

= e

[ A =— A = |

—_—— O

—— PEaaitiplicaarct
— P

——

' I
Shiaft right . A anda O
Cowsnt —-— Cowunt — 3
~No i=

CCowsmt 2

Yes
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B C A Q Components Count P
1101 O O 000 1010 B «— Multiplicand
| OO0 t44Q «— Multiplier
A«—0.C«—0.Pe—n
1101 (@) 0O 000 1010 1
(6] 0000 0 1O1 C A Q shifted right
Ol1l0i21
Q,=1.A«<— A+B
JIOI O olo 1010 CAPBR <. P —_Iright
. . . »=0. 001 (1)
b 00 I i u it i C A Q shifted right
11 01 1 00 00O 10 1 Pe—P-1
0 100 0 0 010 C A @ .shi ftoct right

flow cf-iart f<>r mwiltipficati<>n in a corripwter.

@l

|0

ol
4|0

ASM FOR WEIGHING MACHINE

In tte a[$oriOin for tabolir minimization of Boolean expressions, we have to arrange be ininnnns

in thc ascending order of their weights. This is only one of the iniuiy situations when we have tn

examine the 1» of a given binary word. The wsight of a binary number is defined as the number of

5 }7f0 S9ltt 1f1 Ils blf1d£\ fe]7fed nldtlOn.
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Input data
ﬂ ck
Shift right »
Serial input = 0 ——— 1 Right shift register R D Q
Load input Flip-flop

J

I Zero checking circuit O ]

| Z=1HR=0

Start
- (= o] |
T s
T!
T?
— 'l'3

All 1s

Counter W

Count
Oatapeth subsystem lor weighing machine.

[o1e)
sc) Initial State
o1

put
| 1s

& n

In
an o
ww  S—
nift r
wW
| 3
] w

===

R = Input
= W ——all 1s

1

‘oi 1 o1

S5 W a— W + 1 I

Ll
1

=z,
o
+ 10
S:I Shift right into F
I T
s-| |

O
(i\/

Y

DIGITAL ELECTRONICS
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6r / S . Ln*ti atJy lite weighing stack ine i s in state Sg. one weighing process stacts wficn suu-t (S}
signal becomes | . Whi le in state fi if *>i s |, the clock pulse cauws three jobs to be done sinTu Itaneousfy."

1. Bi nay num berisloader4inEo isCer R.
2. W regJ ster is set to all G s.
3. The xtachine is rransFerred to stare S, .
State 5,2 While in state S, the clock pulse causes two jobs to be done simultancously:
. COuntcr W in income rated by' 1{in thJz First councJd, all I s b+>c:Om &J1 US).
2. ITZis0.thein ashinegeeslalLhcscalefi:ilZis|.tMemachinc gcees to state fi .

crore $ o* In this state. regiMer R ix lifted righthyl hitin thaE L SCy «<ws intt Fand M $ B is
1naded with O
fiinm Sy: In iii is siate, rhe value of F is chicken. Jf iz is 0, the machine is rransf'erred to
the state S,, othew'ise the machine i3 transferred to state S,. Thus. when F - 1. W is
incremented.
All the operations occur in coincidence with the clock pulse while in the corresponding state.
Also nokcc «w the rugi star k should eventually contain all Os when the last | is stiir in into .

11
(T~
0/0
(a) State diagram
PS NS, O/P
InputO
D- D D-1
A AD B, 1
B AD B, 1
(D) State table
101 111
00/0 ‘ 00f1
01/0 101
@) State diagram
PS NS,0GP
Input J-K
OD D1 10 11
A A, O A, O B,1 B, 1
B B,1 A,O B,1 A, 0

<b> s<ata lable (c) ADM chart
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